Mathematik I M WM Übungen 8. Übungsblatt

59. Differenzieren Sie die Funktionen

(a)
$$f(x) = \frac{x}{\sqrt{a + bx}}$$
 (b) $f(x) = \arccos \sqrt{\frac{\cos 3x}{\cos^3 x}}$ (c) $f(x) = \ln \sqrt{\frac{1 + \sin x}{1 - \sin x}}$ (d) $f(x) = \tan \sqrt{2 - \sin^2 x}$ (e) $g(x) = \sqrt[x]{x}$

(a)
$$\lim_{x \to 0} \ln \left((e^x - e^{-x})^{e^x - 1} \right)$$
 (b) $\lim_{x \to 1} \frac{x^x - x}{1 - x + \ln x}$ (c) $\lim_{x \to \infty} 3^{\left(\frac{2 \arctan x}{\pi} \right)^x}$ (d) $\lim_{x \to \frac{1}{2}} (4^x - 2) \tan(\pi x)$ (e) $\lim_{x \to \frac{\sqrt{3}}{2}} \frac{\arcsin x - \frac{\pi}{3}}{4x^2 - 3}$ (f) $\lim_{x \to 0} \left(\frac{1}{\ln(1 + x)} - \frac{1}{\ln(1 + x + x^2)} \right)$

61. Gegeben sei die Funktion:

$$f(x) = \begin{cases} 2 - x^2 & |x| \ge 2\\ -\frac{4}{|x|} & |x| < 2 \end{cases}$$

- (a) Bestimmen Sie den maximalen Definitonsbereich!
- (b) Für welche $x \in \mathbb{R}$ ist die Funktion stetig bzw. differenzierbar? Geben Sie gegebenenfalls den Wert der Ableitung an!
- (c) Bestimmen Sie die Grenzwerte der Funktion am Rande des Definitionsbereiches (auch $\pm \infty$).

62. Bestimmen Sie für die Funktion

$$f(x) = \frac{x+1}{x^2+1}$$

- (a) den maximalen Definitionsbereich und die maximalen Monotonie- und Konvexitätsintervalle.
- (b) Besitzt diese Funktion lokale bzw. globale Extrema? Wenn ja, dann geben Sie alle Extrema an.
- (c) Untersuchen Sie das Verhalten der Funktion am Rande des Definitionsbereiches (auch $\pm \infty$).

63. Bestimmen Sie für die Funktion

$$f(x) = \frac{x+2}{e^x + 1}$$

- (a) die lokalen Extrema,
- (b) sowie die Asymptoten für $x \to \infty$ und $x \to -\infty$.

64. Gegeben sei die Funktion $f(x) = e^{-\frac{x}{2}}\sqrt{x+1}$. Man bestimme

- (a) Definitionsbereich und Nullstellen,
- (b) Extrema
- (c) sowie Konvexitäts- und Konkavitätsbereiche.

65. Bestimmen Sie von der Funktion

$$f(x) = \sqrt{\frac{x^2 - 5x + 6}{x - 5}}$$

- (a) Definitionsbereich und Nullstellen,
- (b) Extrema
- (c) sowie das Verhalten (links- bzw. rechtsseitiger Grenzwert, sofern existent) von f und f' an den Grenzen des Definitionsbereich (auch ∞).