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ON EXPLICIT BOUNDS FOR THE SOLUTIONS OF A CLASS OF
PARAMETRIZED THUE EQUATIONS OF ARBITRARY DEGREE

CLEMENS HEUBERGER

Abstract. In a recent paper [7] the author considered the family of parametrized Thue equa-
tions

Fa(X,Y ) :=

n∏
i=1

(X − pi(a)Y )− Y n = ±1, a ∈ N

for monic polynomials p1, . . . , pn ∈ Z[a] which satisfy

deg p1 < · · · < deg pn.

Under some technical hypothesis it could be proved that there is a computable constant a0 =
a0(p1, . . . , pn) such that for all integers a ≥ a0 the only integer solutions (x, y) of the Diophantine
equation satisfy |y| ≤ 1.

In this paper, we give an explicit expression for a0 depending on the polynomials p1, . . . ,

pn.

1. Introduction

A Thue equation is a Diophantine equation

F (X,Y ) = m,

where F ∈ Z[X,Y ] is an irreducible form of degree at least 3 and m is a nonzero integer.
A. Thue [18] proved in 1909 that the number of integer solutions is finite. A. Baker [1] could
give an effective upper bound for the solutions. Recent explicit upper bounds are due to Bugeaud
and Győry [3]. Algorithms for the solution of a single Thue equation have been developed by
Pethő and Schulenberg [11], Tzanakis and de Weger [19], and Bilu and Hanrot [2].

Starting with E. Thomas [16], parametrized families of Thue equations have been considered
(see [9] for further references). In all these cases, an explicit constant a0 could be given such that
there are only “trivial” solutions if the parameter is larger than a0.

A further step is the investigation of classes of parametrized families of arbitrary degree such
as

(1) Fa(X,Y ) :=
n∏
i=1

(X − pi(a)Y )− Y n = ±1

where p1, . . . , pn ∈ Z[a] are some polynomials, cf. [6, 8, 10, 7]. In these papers, the existence of
a constant a0 in the above sense could be proved. To obtain the constant for a specific family
determined by some specific polynomials p1, . . . , pn it is necessary to run along the lines of the
proofs and to make all implicit constants in asymptotic arguments explicit.

It is the aim of the present paper to give an explicit expression for a0 in the case of monic
polynomials pi with increasing degrees. Thomas [17] conjectured the existence of such a constant,
this conjecture could be proved under certain technical assumptions in [7].

2. Main Results

To refer to results in [7] we will use the convention that item I.n means item n in [7].
The following notations and assumptions will be used throughout the paper.
Let n ∈ N, n ≥ 3 and pi ∈ Z[a] be monic polynomials for i = 1, . . . , n.
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Let di := deg pi (using the convention deg 0 := −1), i = 1, . . . , n, and let the absolute values of
all coefficients of p1, . . . , pn be bounded by P . Furthermore, we assume

(2) d1 < d2 < · · · < dn−1 < dn.

Let

(3) a0 :=

exp
(

1.01(n+ 1)(n− 1)!(n− 1)n−2 exp
(
1.04(n− 2)(ndn − n+ 3)

)(ndn − 1
n− 3

)
(2P + 1)ndn

)
.

With these notations, we can prove the following explicit version of Theorem I.1:
Theorem 1. Let n ≥ 4. Define

(4) ei := (i− 1)di +
n∑

l=i+1

dl, 1 ≤ i ≤ n,

and

(5) ψi :=
(e2 + d2)(di+1 − d3)

ei+1 + di+1
+

i−1∑
h=3

di+1 − dh+1

ei+1 + di+1
ψh, 3 ≤ i ≤ n− 1.

If ψi ∈ N for all 3 ≤ i ≤ n− 1, we define for (j, j′) ∈ {(1, 2), (2, 1)}

Q+
j := (p3 − pj)e1+d3

n∏
k=4

(pk − p3)ψk−1 ,

Q−j := (p2 − p1)e1+2d3−d2(p3 − pj′)2(d3−d2)
n∏
k=4

(pk − pj′)ψk−1+d3−d2 .

If there is a 3 ≤ k ≤ n− 1 such that ψk /∈ N or if we have

(6) deg(Q+
j −Q

−
j ) > degQ−j − e1 − d2

for (j, j′) = (1, 2) and for (j, j′) = (2, 1), then the Diophantine equation (1) only has the solutions

(7) (±1, 0) and ± (pi(a), 1), 1 ≤ i ≤ n
for all integers a ≥ a0.

As in [7], the case n = 3 has been excluded in the formulation of Theorem 1 in order to avoid any
ambiguities; it is stated explicitely in the following theorem as an explicit version of Theorem I.2:
Theorem 2. Let n = 3 and d2 ≥ 1. Define e1 := d2 + d3. For (j, j′) ∈ {(1, 2), (2, 1)} we define

Q+
j := (p3 − pj)e1+d3 ,

Q−j := (p2 − p1)e1+2d3−d2(p3 − pj′)2(d3−d2).

If we have
deg(Q+

j −Q
−
j ) > degQ−j − e1 − d2

for (j, j′) = (1, 2) and for (j, j′) = (2, 1), then the Diophantine equation (1) only has the solutions

(±1, 0) and ± (pi(a), 1), 1 ≤ i ≤ 3

for all integers a ≥ a0.
Weaker formulations of the technical hypothesis corresponding to Corollary I.3 can be given as

follows:
Corollary 3. We write

pi(a) = adi + cia
di−1 + terms of lower degree, i = 2, . . . , n.

Let

δi :=

{
1 if di − di−1 = 1,
0 otherwise
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and

e :=
n∑
i=2

di.

If δ4 = 1 or

(8) (e− d2 + 2d3)(c2 − δ2) + (−e− 2d2 + d3)c3 + (d3 − d2)
n∑
i=4

ci /∈ {2δ3,−(e+ d3)δ3},

then the Diophantine equation (1) only has the solutions (7) for all integers a ≥ a0.

In particular, this implies that if deg p4 = deg p3 + 1, then (1) only has the solutions (7) for
a ≥ a0.

The proof of Corollary 3 is identical to the proof of Corollary I.3.

3. Preliminaries

While our final result can only be proved for a ≥ a0, intermediate results will hold for smaller
values of a. We collect the corresponding bounds here:

a1 := 2P + 2,

a2 := 1.8n2(1.1)nP ≥ 21P,

a3 := 3nnP,

a4 := exp
(
38nndnn2ndnPndn

)
.

Note that a1 ≤ a2 ≤ a3 ≤ a4 ≤ a0 for n ≥ 3, P ≥ 1 and dn ≥ min(2, n− 2) (this last relation is a
consequence of (2)). a will always denote a positive integer.

As an analogue to the usual O-Notation we use an “L-Notation” (borrowed from de Bruijn [4,
Section 1.2]): f(a) = L (g(a)) will mean |f(a)| ≤ g(a), and we will use it in the middle of a
formula in the same way as the O-Notation. For brevity, we will write pi instead of pi(a) in many
situations.

Lemma 4. If a ≥ a1 and 1 ≤ i 6= j ≤ n, then

|pi(a)− pj(a)| ≥ amax(di,dj)

2P + 1
,

which implies
|pi(a)− pj(a)| ≥ 1.

Proof. Without loss of generality we may assume i > j. By (2) we get

|pi(a)− pj(a)| ≥ adi − 2P
di−1∑
k=0

ak ≥ adi
(

1− 2P
a− 1

)
which proves the first assertion of the lemma. The second follows since both pi(a) and pj(a) are
integers. �

Checking the proof of Lemma I.5 using Lemma 4, we obtain

Lemma 5. For a ≥ a1, the solutions (x, y) of (1) with |y| ≤ 1 are precisely those listed in (7).

We consider the polynomial fa(X) := Fa(X, 1) and give asymptotic estimates for its roots
α(1), . . . , α(n) similar to Lemma I.6:

Lemma 6. Let a ≥ a2. All roots of fa are real and fulfill the estimates

α(i) = pi +
(−1)n−i

aei
+ L

(
2.1nP
aei+1

)
= pi + L

(
1.3
aei

)
= pi + L

(
1.3
a3

)
, i = 1, . . . , n.(9)
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Proof. Fix some 1 ≤ i ≤ n. For k = 1, 2 we define

αi,k := pi +
(−1)n−i

aei

(
1 + (−1)k

2.1nP
a

)
and obtain for j 6= i

αi,k − pj = adeg(pi−pj)(−1)σij
(

1 + L

(
2P
a− 1

))
,

where σij = 0 for i > j and σij = 1 for i < j. This implies

f(αi,1) ≤
(

1− 2.1nP
a

)(
1 +

2.1P
a

)n−1

− 1,

f(αi,2) ≥
(

1 +
2.1nP
a

)(
1− 2.1P

a

)n−1

− 1

by (I.14). For 0 ≤ z ≤ 7/(6n2(1.1)n) Taylor’s formula yields

(1− nz)(1 + z)n−1 < 1,

(1 + nz)(1− z)n−1 > 1.

Therefore we get f(αi,1) < 0 < f(αi,2) which proves that there is a real zero α(i) satisfying (9).
Lemma 4 shows that all roots α(i) which we find using this method are distinct. �

4. Associated Number Field

By Lemma 4 and [8, Proposition 3], fa is an irreducible polynomial for a ≥ a1. Therefore the
number field K := Q(α) generated by one of the roots α = α(i) of fa has degree n over Q. From
Section I.4 we recall that this implies that solutions (x, y) ∈ Z2 of (1) correspond to units x− αy
in O := Z[α]. As in [7], we define units ηi := α − pi and the abbreviation l

(k)
i := log

∣∣η(k)
i

∣∣ with
η

(k)
i = α(k) − pi.

We will need explicit estimates for the l(k)
i as in Lemma I.8:

Lemma 7. Let 1 ≤ i, k ≤ n, m := min(i, k), M := max(i, k) and a ≥ a2. Then we have

(10) l
(k)
i = log(pM − pm) + L

(
2.6(2P + 1)
aem+dM

)
, i 6= k,

and in particular

(11) l
(k)
i =

{
dM log a+ L

(
4.2P
a

)
if i 6= k,

−ei log a+ L
(

4.2(n−1)P
a

)
if i = k.

If 1 ≤ L ≤ em + dM then there are rM,m,l ∈ Q, 0 ≤ l ≤ L − 1, which depend only on the
coefficients of the polynomials ps, 1 ≤ s ≤ n, such that

l
(k)
i = rM,m,0 log a+

L−1∑
l=1

rM,m,l

al
+ L

(
1.5(n− 1)(2P + 1)L

LaL

)
,(12)

rM,m,l ∈ Z
[

1
lcm(1, . . . , l)

]
,(13)

|rM,m,l| ≤
1
l
(n− 1)(2P + 1)l, 1 ≤ l ≤ L− 1.(14)

Proof. Assume i 6= k. By definition and by (2) we obtain

l
(k)
i = log

∣∣η(k)
i

∣∣ = log
∣∣pk − pi + α(k) − pk

∣∣ = log(pM − pm) + log
∣∣∣∣1 +

α(k) − pk
pk − pi

∣∣∣∣ .
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By Lemma 6 and Lemma 4 we get for a ≥ a2∣∣∣∣α(k) − pk
pk − pi

∣∣∣∣ ≤ 1.3(2P + 1)
aem+dM

<
1
2
.

Since for |z| ≤ 1/2 we have |log(1 + z)| ≤ 2 |z|, this proves (10).
The observation

log(pM − pm) = log
(
adM

(
1 + L

(
2P
a− 1

)))
similarly yields (11) for i 6= k. The case i = k can be reduced to the case i 6= k because the
relation l

(i)
i = −

∑
j 6=i l

(i)
j holds by definition of α(i). This results in the factor (n− 1) in (11).

In order to prove the remaining part of the lemma, we introduce integer coefficients cM,m,s,
1 ≤ s ≤ dM , for i 6= k such that

log(pM − pm) = log

(
adM

(
1 +

dM∑
s=1

cM,m,s

as

))

= dM log a+
∞∑
t=1

(−1)t+1

t

(
dM∑
s=1

cM,m,s

as

)t
.

Defining rM,m,l to be the coefficient of a−l in this expansion, we obtain

(15) rM,m,l =
l∑
t=1

(−1)t+1

t

∑
0≤s1,...,st≤dM−1
s1+···+st=l−t

t∏
ν=1

cM,m,sν+1.

This immediately proves (13).
Since by definition |cM,m,s| ≤ 2P , we can estimate rM,m,l by

|rM,m,l| ≤
l∑
t=1

1
t
(2P )t

∑
0≤s1,...,st

s1+···+st=l−t

1

≤
l∑
t=1

1
t
(2P )t

(
l − 1
t− 1

)
=

1
l
(2P + 1)l.

This yields (14) (the factor (n− 1) in (14) is needed for i = k).
Finally, we have to prove the remainder term in (12):∣∣∣∣∣

∞∑
l=L

rM,m,l

al

∣∣∣∣∣ ≤ (2P + 1)L

LaL

∞∑
l=0

(
2P + 1
a

)l
≤ 1.17(2P + 1)L

LaL
.

Taking into account the remainder term from (10) and the case i = k, we get (12). �

We will show that ηi, i = 1, . . . , n− 1, are “sufficiently close” to fundamental units in O×. To
achieve this aim, we will need some lower bound for the regulator RK of the number field. We
take an absolute bound of Pohst [13, Satz II]:
Lemma 8 (Pohst). Let K be a totally real number field. Then the regulator RK satisfies

RK > 0.315.

We remark that we could choose a bound which depends on the discriminant of the number
field (cf. Pohst [12]). We would gain a logarithmic factor, but the constants would be harder to
deal with (and the final constant a0 would not be improved).

In order to estimate determinants involving our asymptotic bounds, we need the following
auxiliary result:
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Lemma 9. Let C and ∆ be n × n matrices with columns c1, . . . , cn and δ1, . . . , δn respectively.
Let ‖ci‖2 < % and ‖δi‖2 < ε% for 1 ≤ i ≤ n.

If

ε < min
(

0.1,
2

n(1.1)n

)
,

then we have

(16) det(C + ∆) = detC + L (2n%nε)

Proof. We can express the determinant under consideration as

det(c1 + δ1, . . . , cn + δn) = det(c1, . . . , cn) + det(c1, . . . , cn−1, δn)

+ det(c1, . . . , cn−2, δn−1, cn + δn) + · · ·+ det(δ1, c2 + δ2, . . . , cn + δn).

Using Hadamard’s inequality, we obtain

det(C + ∆) = detC + L (ε%n) + L (ε%n(1 + ε)) + · · ·+ L
(
ε%n(1 + ε)n−1

)
= detC + L

(
ε%n

(1 + ε)n − 1
ε

)
.

For the given range of ε, this implies (16). �

In our applications of Lemma 9 it will be convenient to refer to the following lemma:
Lemma 10. Let a ≥ a2, 1 ≤ k ≤ n and {i1, . . . , in−1} be a subset of {1, . . . , n} of cardinality
n− 1. Then ∥∥∥(l(k)

i

)
i=i1,...,in−1

∥∥∥
2
≤ ndn log a.

Proof. This is a consequence of (11) and (2). �

We now have collected all tools to prove the following analogue of Lemma I.9:
Lemma 11. Let {i1, . . . , in−1} be a subset of {1, . . . , n} of cardinality n− 1 and

G :=
〈
−1, ηi1 , . . . , ηin−1

〉
⊆ O×.

Define

D :=

∣∣∣∣∣∣∣∣∣∣∣
det


−e1 d2 d3 . . . dn−1

d2 −e2 d3 . . . dn−1

d3 d3 −e3 . . . dn−1

...
...

. . . . . .
...

dn−1 dn−1 dn−1 . . . −en−1



∣∣∣∣∣∣∣∣∣∣∣
Then the regulator RG can be estimated by

(17) RG = D logn−1 a+ L

(
8.4nndn−2

n P
logn−2 a

a

)
if a ≥ a2. For a ≥ a3 we conclude that

(18)
1
2
D logn−1 a ≤ RG ≤

3
2
D logn−1 a.

For a ≥ a3 the index [O× : G] is bounded by

(19) [O× : G] ≤ 4.8D logn−1 a.

Proof. Assume first i1 = 1, . . . , in−1 = n− 1. Equation (11), Lemma 9 and Lemma 10 imply

RG = D logn−1 a+ L

(
2(n− 1)(ndn log a)n−1 4.2P

dna log a

)
,

and we obtain (17).
Gershgorin’s circle theorem [5] shows that D ≥ dn−1

n , which leads to (18) for a ≥ a3.
For arbitrary i1, . . . , in−1, the result follows from l

(i)
n = −

∑n−1
k=1 l

(i)
k .
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Equation (19) is a consequence of Pohst and Zassenhaus [14, p. 361], Lemma 8, and (18):

I = [O× : G] =
RG
RO
≤ RG
ROK

≤ RG
0.315

≤ 4.8D logn−1 a.

�

5. Approximation Properties of Solutions

For a solution (x, y) ∈ Z2 of (1) we define β := x− αy. We say that (x, y) is a solution of type
j if ∣∣β(j)

∣∣ = min
i=1,...,n

∣∣β(i)
∣∣.

The standard machinery for Thue equations yields
Lemma 12. For a ≥ Pa2 the estimates∣∣β(j)

∣∣ ≤ 2n−1(2P + 2)n−1 1
|y|n−1 ·

1
aej

,(20)

log
∣∣β(i)

∣∣ = log |y|+ l
(i)
j + L

(
(2P + 2)n

aej+d2

)
, i 6= j,(21)

hold.

Proof. Since |y|
∣∣α(i) − α(j)

∣∣ ≤ 2
∣∣β(i)

∣∣, we obtain∣∣β(j)
∣∣ =

1∏
i 6=j
∣∣β(i)

∣∣ ≤ 2n−1

|y|n−1∏
i 6=j
∣∣α(i) − α(j)

∣∣ .
Estimating

∣∣α(i) − α(j)
∣∣ by (9) and Lemma 4 results in (20).

Since∣∣∣∣β(i)

y

∣∣∣∣ =
∣∣∣∣xy − α(j) + α(j) − pj + pj − α(i)

∣∣∣∣ =
∣∣∣α(i) − pj

∣∣∣ · ∣∣∣∣1 +
α(j) − pj
pj − α(i)

+
β(j)

y(pj − α(i))

∣∣∣∣ ,
estimate (21) follows from Lemma 6 and (20). �

The main task is to exclude solutions with |y| ≥ 1 but |y| not very large. To this aim, we prove
the following analogue to Proposition I.10:
Proposition 13. Let (x, y) ∈ Z2 be a solution of (1) with |y| ≥ 2 and a ≥ a0. Then

(22) log |y| ≥ 0.05
1.2nPnn−2d2n−5

n

· a

logn−3 a
.

Proof. Since β is a unit by (I.16), Lemma 11 yields

(23) βI = ±ηui1i1
. . . η

uin−1
in−1

,

where {i1, . . . , in−1} is a subset of {1, . . . , n} of cardinality n− 1, which will be chosen depending
on the case j of the solution, ui1 , . . . , uin−1 are integers and I can be bounded by (19).

Taking logarithms of the conjugates h ∈ {1, . . . , n} \ {j} of (23), we get a system of linear
equations for the uik/I:

log
∣∣β(h)

∣∣ =
ui1
I
l
(h)
i1

+ · · ·+
uin−1

I
l
(h)
in−1

, h 6= j.

Cramer’s rule yields

R
uik
I

=

∣∣∣∣∣∣∣∣
l
(1)
i1

. . . l
(1)
ik−1

log
∣∣β(1)

∣∣ l
(1)
ik+1

. . . l
(1)
in−1

...
. . .

...
...

...
. . .

...
l
(n)
i1

. . . l
(n)
ik−1

log
∣∣β(n)

∣∣ l
(n)
ik+1

. . . l
(n)
in−1

∣∣∣∣∣∣∣∣ ,
where the j-th row is omitted and R denotes the determinant of the system matrix, which is (up
to a sign) the regulator RG estimated in Lemma 11.
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Applying (21) and Lemma 10 we obtain for a ≥ Pa2

(24) R
uik
I

= Mj,ik log |y|+ ∆j,kR+ L

(
(2P + 2)ndn−2

n nn−3/2 logn−2 a

aej+d2

)
,

where ∆j,k = ±1 if j /∈ {i1, . . . , ik−1, ik+1, . . . , in−1} and 0 else and

Mj,ik =

∣∣∣∣∣∣∣∣
l
(1)
i1

. . . l
(1)
ik−1

1 l
(1)
ik+1

. . . l
(1)
in−1

...
. . .

...
...

...
. . .

...
l
(n)
i1

. . . l
(n)
ik−1

1 l
(n)
ik+1

. . . l
(n)
in−1

∣∣∣∣∣∣∣∣ ,
where the j-th row is omitted.

Using the information on l(k)
i contained in Lemma 7, we obtain the following lemma which will

be proved at the end of this section.

Lemma 14. If a ≥ Pa2 and 2 ≤ L ≤ e1 + d2, then there are Gj,i,l,λ ∈ Q for 0 ≤ l ≤ L − 1 and
0 ≤ λ ≤ n− 2 such that

Mj,i =
L−1∑
l=0

n−2∑
λ=max(0,n−2−l)

Gj,i,l,λ
logλ a
al

(25)

+ L

(
0.24nn−2dn−3

n (2P + 1)L
(

7
6

)n
L

(
n+ L− 3
n− 3

)
(n− 1)!

logn−3 a

aL

)
Gj,i,l,n−2 = 0 if l ≥ 1(26)

|Gj,i,l,λ| ≤ (n− 1)!(n− 1)n−2dλn(2P + 1)l
(
n− 2
λ

)(
l − 1

n− λ− 3

)
(27)

and if Gj,i,l,λ 6= 0 then

|Gj,i,l,λ| ≥ exp
(
−1.04 · (n− 2− λ)(λ+ l − n+ 3)

)
.(28)

If j ∈ {1, 2}, we set

j′ :=

{
2 if j = 1,
1 if j = 2

and (i1, . . . , in−1) = (1, 2, 4, . . . , n). We choose vj := (d2 − d3)(uj − I) + (d3 + e1)uj′ and by (24)
we get

(29) R
vj
I

= Mj log |y|+ L

(
(n+ 1)dn(2P + 2)ndn−2

n nn−3/2 logn−2 a

aej+d2

)
,

where

Mj =

∣∣∣∣∣∣∣∣
(d2 − d3)(l(3)

j′ − l
(j′)
j′ ) + (d3 + e1)(l(3)

j − l
(j′)
j ) (l(3)

4 − l(j
′)

4 ) . . . (l(3)
n − l(j

′)
n )

...
...

. . .
...

(d2 − d3)(l(n)
j′ − l

(j′)
j′ ) + (d3 + e1)(l(n)

j − l(j
′)

j ) (l(n)
4 − l(j

′)
4 ) . . . (l(n)

n − l(j
′)

n )

∣∣∣∣∣∣∣∣
by (I.28).

Equation (11) yields

(d2 − d3)(l(3)
j′ − l

(j′)
j′ ) + (d3 + e1)(l(3)

j − l
(j′)
j ) = L

(
12.6 · Pndn

a

)
l
(3)
k − l

(j′)
k = L

(
8.4 · P
a

)
, 4 ≤ k ≤ n.

By Hadamard’s inequality we obtain

(30) Mj ≤ 7.5(1.2)nPnn−2d2n−5
n

logn−3 a

a
.
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If 3 ≤ j ≤ n, we choose (i1, . . . , in−1) = (1, 3, . . . , n) and vj := u1. By (24), we get (29) for this
case, too, where by (I.25)

Mj =

∣∣∣∣∣∣∣∣∣∣
0 l

(1)
3 − l(2)

3 . . . l
(1)
n − l(2)

n

1 l
(2)
3 . . . l

(2)
n

...
...

. . .
...

1 l
(n)
3 . . . l

(n)
n

∣∣∣∣∣∣∣∣∣∣
,

where the j-th row is omitted. Since by (11) we have

l
(1)
k − l

(2)
k = L

(
8.4 · P
a

)
, 3 ≤ k ≤ n,

(30) holds in this case also.
For all j there is an expansion

Mj =
e1+d2−1∑
l=0

n−2∑
λ=max(0,n−2−l)

Gj,l,λ
logλ a
al

+ L

(
0.32nndn−1

n (2P + 1)e1+d2

(
7
6

)n(
n(dn + 1)− 3

n− 3

)
(n− 1)!

logn−3 a

ae1+d2

)
for some rationals Gj,l,λ independent of a by Lemma 14.

In [7] we proved (I.24) assuming the technical hypothesis of Theorems 1 and 2. Therefore, there
are some 1 ≤ l ≤ e1 + d2 − 1 and some 0 ≤ λ ≤ n− 3 — we remark that λ = n− 2 would imply
l = 0 by (26), which is impossible by (30) — such that Gj,l,λ 6= 0. We choose (l0, λ0) such that
Gj,l0,λ0 6= 0, but Gj,l,λ = 0 for all (−l, λ) ≥lex (−l0, λ0).

By (29), (28), (27) and (25) (for L = l0 + 1), log |y| ≥ log 2, we obtain∣∣∣Rvj
I

∣∣∣ ≥ logλ0 a

al0
log 2

(
exp
(
−1.04(n− 2− λ0)(λ0 + l0 − n+ 3)

)
−
λ0−1∑
λ=0

(n+ 1)dn(n− 1)!(n− 1)n−2dλn(2P + 1)l0
(
n− 2
λ

)(
l0 − 1

n− λ− 3

)
logλ−λ0 a

− 0.24(n+ 1)nn−1dn−1
n (2P + 1)ndn

(
7
6

)n(
n+ ndn − 3

n− 3

)
(n− 1)!

logn−3 a

a

− 1
log 2

(n+ 1)dn(2P + 2)ndn−2
n nn−3/2 logn−2 a

a

)
.

For a ≥ a4, we get log10 000n a ≤ a. The above expression is minimal for maximal l0 which we
estimate by l0 ≤ ndn. We note that(

n− 2
λ

)(
ndn − 1
n− λ− 3

)
≤
(
ndn − 1
n− 3

)
.

For a ≥ a0, this implies |Rvj/I| > 0, i. e. |vj | > 0, which yields |vj | ≥ 1.
Together with (29) and Lemma 11 this implies

|Mj log |y|| ≥
∣∣∣∣RI
∣∣∣∣ · |vj | − (n+ 1)dn(2P + 2)ndn−2

n nn−3/2 logn−2 a

aej+d2
≥ 0.314.

Using (30) we finally obtain (22). �

Proof of Lemma 14. By definition we get

Mj,ik =
∑

σ∈Sj,ik

sgn(σ)
∏

t∈Tj,ik

l
(σ(t))
t ,
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where

Tj,ik := {i1, . . . , ik−1, ik+1, . . . , in−1}
Sj,ik :=

{
σ : Tj,ik ∪ {ik} → {1, . . . , j − 1, j + 1, . . . , n} bijection

}
.

From (12) and (14), we obtain

(31)

∏
t∈Tj,ik

l
(σ(t))
t =

∏
t∈Tj,ik

(
rM,m,0 log a+

L−1∑
l=1

rM,m,l

al

)

+ L

(
1.5nn−2dn−3

n (2P + 1)L

L
· logn−3 a

aL

)
,

where M and m are shortcuts for max(t, σ(t)) and min(t, σ(t)), respectively.
Expanding the product in (31) results in

(32)
∏

t∈Tj,ik

(
rM,m,0 log a+

L−1∑
l=1

rM,m,l

al

)
=

(n−2)(L−1)∑
l=0

1
al

(
n−2∑
λ=0

logλ aG̃j,i,l,λ,σ

)
,

where G̃j,i,l,λ,σ ∈ Q. We remark that if we do not take a term rM,m,0 log a — which occurs n−2−λ
times — we have to take at least a factor 1/a, which shows that

(33) G̃j,i,l,λ,σ = 0 for λ+ l < n− 2.

Similarly we note that if λ = n− 2 then l = 0, which proves (26).
We estimate the denominator of G̃j,i,l,λ,σ. By (32) and (33), it is the product of n−2−λ terms

rM,m,lt with
∑
t lt = l, which implies that for each t we have lt ≤ l − (n− 3− λ). Therefore (13)

yields

(34) denominator(G̃j,i,l,λ,σ) ≤ lcm(1, . . . , l + λ− (n− 3))n−2−λ.

Rosser and Schoenfeld [15, Theorem 12] prove for k ∈ N

log lcm(1, . . . , k) ≤ 1.04k.

Together with (34) this leads to

denominator(G̃j,i,l,λ,σ) ≤ exp(1.04 · (l + λ− n+ 3)(n− 2− λ)),

and (28) is proved.
Now, we consider upper bounds for G̃j,i,l,λ,σ: From (32), (11), and (14) we get∣∣∣G̃j,i,l,λ,σ∣∣∣ ≤ (n− 2

λ

)(
(n− 1)dn

)λ ∑
1≤l1,...,ln−2−λ
l1+···+ln−2−λ=l

n−2−λ∏
u=1

(
(n− 1)(2P + 1)lu)

≤ (n− 1)n−2dλn(2P + 1)l
(
n− 2
λ

)(
l − 1

n− λ− 3

)
,(35)

which leads to (27).
We still have to prove the remainder term in (25). Using (26) and (35) we obtain∣∣∣∣∣∣

(n−2)(L−1)∑
l=L

1
al

(
n−2∑
λ=0

logλ aG̃j,i,l,λ,σ

)∣∣∣∣∣∣
≤ logn−3 a

aL
(n− 1)n−2dn−3

n (2P + 1)L
∞∑
l=L

(
2P + 1
a

)l−L n−3∑
λ=0

(
n− 2
λ

)(
l − 1

n− λ− 3

)

=
logn−3 a

aL
(n− 1)n−2dn−3

n (2P + 1)L
∞∑
l=L

(
2P + 1
a

)l−L(
n+ l − 3
n− 3

)
.
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To estimate this sum, we note that for 0 ≤ z < 1 and integers u, v Cauchy’s remainder form for
Taylor’s theorem used for F (z) = (1− z)−(v+1) yields

∞∑
l=0

zl
(
u+ v + l

v

)
≤ u

(
u+ v

u

)
(1− z)−(v+2).

We conclude that∣∣∣∣∣∣
(n−2)(L−1)∑

l=L

1
al

(
n−2∑
λ=0

logλ aG̃j,i,l,λ,σ

)∣∣∣∣∣∣
≤
(

7
6

)n−1

(2P + 1)L(n− 1)n−2dn−3
n L ·

(
n+ L− 3
n− 3

)
· logn−3 a

aL

and combine it with the remainder term from (31) so that we get (25). �

6. Large Solutions

We will now exclude “large solutions” using an explicit bound due to Bugeaud and Győry [3]:
Theorem 15 (Bugeaud-Győry [3]). Let F ∈ Z[X,Y ] be a homogeneous irreducible polynomial of
degree n ≥ 3 and 0 6= m ∈ Z. Let B ≥ max{|m| , e}, α be a zero of F (X, 1), K := Q(α), R := RK
the regulator and r the unit rank of K. Let H ≥ 3 be an upper bound for the absolute values of
the coefficients of F .

Then all solutions (x, y) ∈ Z2 of
F (x, y) = m

satisfy
max{|x| , |y|} < exp

(
C ·R ·max{logR, 1} · (R+ log(HB))

)
,

where
C = C(n, r) = 3r+27(r + 1)7r+19n2n+6r+14.

In our situation, we have B = e, RK ≤ RO ≤ RG ≤ 3
2D logn−1 a by (18), r = n − 1. After

some calculations, we get
H ≤ 1.01andn

for a ≥ a0. We obtain

log |y| ≤ 5.78 · 1012 · 3nn17n+19d2n−2
n log2n−2 a log log a.

By (22), we get

a ≤ 1.16 · 1014 · (3.6)nd4n−7
n n18n+17P log3n−5 a log log a.

This leads to a contradiction to a ≥ a0, which proves Theorems 1 and 2.
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[11] A. Pethő and R. Schulenberg, Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34 (1987),

189–196.

[12] M. Pohst, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory 9 (1977), 459–
492.

[13] , Eine Regulatorabschätzung, Abh. Math. Sem. Univ. Hamburg 47 (1978), 95–106.

[14] M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press, Cambridge
etc., 1989.

[15] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math.
6 (1962), 64–94.

[16] E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990),

235–250.
[17] , Solutions to certain families of Thue equations, J. Number Theory 43 (1993), 319–369.
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