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ON MINIMAL EXPANSIONS IN REDUNDANT NUMBER SYSTEMS:

ALGORITHMS AND QUANTITATIVE ANALYSIS

CLEMENS HEUBERGER AND HELMUT PRODINGER

Abstract. We consider digit expansions in base q ≥ 2 with arbitrary integer digits
such that the length of the expansion plus the sum of the absolute values of the digits
is minimal. Since this does not determine a unique minimal representation, we describe
some reduced minimal expansions.

We completely characterize its syntactical properties, give a simple algorithm to com-
pute the reduced minimal expansion and a formula to compute a single digit without
having to compute the others, and we calculate the average cost of such an expansion.

1. Introduction

On several occasions, representations of integers in redundant number systems have
been studied. The motivation usually comes from various applications where “better”
representations of an integer result in faster computations.

We give an example from public key cryptography using elliptic curves: These cryptosys-
tems rely on the fact that it is rather easy to compute a multiple nP of a given point on an
elliptic curve E(Fq), but there is no known efficient way to calculate n from the knowledge
of P and nP . Of course, if the computation of nP can be done even faster, larger values
of the parameters can be chosen in order to make the system less vulnerable. The usual
way to calculate nP is a repeated doubling and addition algorithm, see Knuth [13]. As it
was remarked by Morain and Olivos [14], a repeated doubling and addition or subtracting

scheme can be applied using a representation n =
∑l

i=0 εi2
i where εi ∈ {0,±1}. The time

to compute nP decreases as l + 1 +
∑

i |εi| decreases, since it is as easy to add a point on
an elliptic curve as to subtract it.

Additionally, in the last years differential power analysis of cryptosystems has attracted
attention: it tries to recover secret keys by monitoring power signals of cryptographic
devices. Since in the usual doubling and addition scheme it can easily be detected whether
an addition and a doubling or a doubling alone takes place, the binary representation of n
can be guessed. But if digits ±1 are used, a potential attacker can gain less information.
We refer to Coron [5] for further discussions.
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This motivates the study of representations of an integer n in base q ≥ 2 with arbitrary
digits, and we will denote the set of such representations by

(1.1) Rq(n) :=

{

ε = (ε0, . . . , εl) : l ∈ N, εi ∈ Z, n =
l
∑

i=0

εiq
i

}

.

We define the cost of a representation ε ∈ Rq(n) as

(1.2) c(ε) = c(ε0, . . . , εl) := l + 1 +
l
∑

i=0

|εi|

and look for representations of n with minimum cost.
At several places in this paper, we will also consider a modified cost function, which we

will call relaxed costs, namely

(1.3) c′(ε) = c′(ε0, . . . , εl) :=
l
∑

i=0

|εi| .

We note that in general there is no unique minimal representation: Both (−1, 2) ∈ R3(5)
and (2, 1) ∈ R3(5) are representations of 5 in base 3 with cost c(−1, 2) = c(2, 1) = 5. It
will be a consequence of Theorem 1 that there are no cheaper expansions in R3(5).

Our first aim in Section 2 is to describe a special minimal representation (which we will
call a reduced representation), which will be unique (cf. Theorem 1). The proof of unique-
ness will immediately give an efficient algorithm to compute the reduced representation
(cf. Algorithm 1). The corresponding results for relaxed costs and the conversion rules
between the two representations will be discussed in Section 3.

In Sections 4 and 5 we will give an explicit formula for the digits of the reduced repre-
sentation in the case of odd and even q, respectively. These formulæ will be very useful for
the computation of the frequencies of digits and the expected costs of the representations,
as will be shown in Section 6.

An overview on previous work in this area is postponed to Section 7, where all required
definitions will be available.

We assume without loss of generality that n > 0. The following notations will be used
throughout the paper: the set of nonnegative integers is N := {0, 1, . . . }, by {x} := x−bxc
we denote the fractional part of a real number x, for a set A, A+ is defined as

⋃

n≥1 An, and

& is the concatenation function & : A+×A→ A+; (a0, . . . , al) & al+1 := (a0, . . . , al, al+1).
As usual, the minimum of the empty set is defined as∞. We write logq(n) := log(n)/ log(q)
for the logarithm to base q. We will use Iverson’s convention as in [8], i. e. for any expression
expr , [expr ] = 1 if expr is true and = 0 otherwise, e. g. [x ≥ y] = 1 if x ≥ y and = 0
otherwise.
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2. Reduced Representations

Let n > 0 and q ≥ 2 be fixed. We will describe “reduction rules” of the shape
(η0, . . . , ηr) → (η′

0, . . . , η
′
r). To apply such a rule to a representation ε means to re-

place the first occurrence (from the left, i. e. the least significant digits) of (η0, . . . , ηr)
in ε by (η′

0, . . . , η
′
r). Additionally, reduction rules (η0, . . . , ηr) � (η′

0, . . . , η
′
s) will oc-

cur, which we are only allowed to apply at the end of the representation, i. e. if ε =
(ε0, . . . , εl−r−1, η0, . . . , ηr). Note that in the case of rules at the end, the length of the rep-
resentation may change. We emphasize that a reduction rule must be applied at the first
occurrence of the pattern.

Furthermore, define f : Rq(n) → Rq(n) in the following way: Given ε = (ε0, . . . , εl) ∈
Rq(n), try the following reduction rules (in the given order) until ε first changes and return
this result.

(2.1) (0) � ().
(2.2) For |η0| > q/2, η1 ∈ Z, and u := d|η0| /q − 1/2e: (η0, η1) → (η0 − uq sign(η0), η1 +

u sign(η0)).
(2.3) For |η0| > (q + 1)/2 and u := d|η0| /q − 1/2e: (η0) � (η0 − uq sign(η0), u sign(η0)).
(2.4) For 2 - q: (−(q − 1)/2, 1) � ((q + 1)/2).
(2.5) For 2 | q: (−q/2,−q/2 + 1, 1) � (q/2, q/2).
(2.6) For η0 < 0 and 2 | q: (q/2, η0)→ (−q/2, η0 + 1).
(2.7) For η0 > 0 and 2 | q: (−q/2, η0)→ (q/2, η0 − 1).
(2.8) For η0 < q/2 and 2 | q: (q/2, q/2, η0)→ (−q/2,−q/2 + 1, η0 + 1).
(2.9) For −q/2 < η0 and 2 | q: (−q/2,−q/2, η0)→ (q/2, q/2− 1, η0 − 1).

(2.10) For 2 | q: (q/2, q/2, q/2) � (−q/2,−q/2 + 1,−q/2 + 1, 1).

We note that f is well defined since all of the above reduction rules indeed transform
representations of n to representations of n.

We say that ε ∈ N+ is reduced if f(ε) = ε. This is the case if and only if the following
holds:

(2.11) There are no trailing zeros.
(2.12) −q/2 ≤ εi ≤ q/2 for 0 ≤ i ≤ l − 1 and |εl| ≤ (q + 1)/2.
(2.13) The sequence does not end on (−(q − 1)/2, 1) or (−q/2,−q/2 + 1, 1).
(2.14) If εi = q/2 then 0 ≤ εi+1 ≤ q/2− 1 except when i = l− 1, where only 0 ≤ εi+1 ≤ q

is required, or when i = l.
(2.15) If εi = −q/2 then −q/2 + 1 ≤ εi+1 ≤ 0 (except when i = l).

Lemma 1. Given ε ∈ Rq(n). Then the sequence defined by

ε(0) := ε, ε(i+1) := f(ε(i)) for i ≥ 0

stabilizes, i. e. there is some m ≥ 0 such that ε(i) = ε(m) for all i ≥ m.
Additionally, c(ε(i+1)) ≤ c(ε(i)) for i ≥ 0.
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Proof. We define ω : Z+ → (Z ∪∞)8 by

ε = (ε0, . . . , εl) 7→
(

c(ε),

−min{0 ≤ i ≤ l : |εi| > q/2},

−min{0 ≤ i ≤ l : |εi| > (q + 1)/2},

card{0 ≤ i ≤ l : |εi| = q/2},

−min{0 ≤ i ≤ l − 1 : (εi, εi+1) = (q/2, q/2)},

min{1 ≤ i ≤ l − 1 : ∃η0 < q/2 : (εi−1, εi, εi+1) = (q/2, q/2, η0)},

−min{0 ≤ i ≤ l − 1 : (εi, εi+1) = (−q/2,−q/2)},

min{1 ≤ i ≤ l − 1 : ∃η0 > −q/2 : (εi−1, εi, εi+1) = (−q/2,−q/2, η0)}
)

and ≺ to be the relation on Z+ defined by

ε ≺ ε′ :⇐⇒ ω(ε) <lex ω(ε′).

It is straightforward to prove that for all ε ∈ Rq(n)

(2.16) f(ε) = ε or f(ε) ≺ ε;

we show the most complicate case only, namely the rule (2.9).
Let

ε = (ε0, . . . , εm−1,−q/2,−q/2, η0, εm+3, . . . , εl),

ε′ = (ε0, . . . , εm−1, q/2, q/2− 1, η0 − 1, εm+3, . . . , εl).

Since rule (2.7) could not be applied (in that case, we would not have been allowed to
apply (2.9)), we have η0 ≤ 0 and therefore −q/2 ≤ η0 − 1 < 0.

We calculate that c(ε′)− c(ε) = −1 + |η0 − 1| − |η0| = 0. Since 2 | q and rules (2.2) and
(2.3) could not be applied, all |εi| , |ε

′
i| ≤ q/2 and ω2(ε) = ω2(ε

′) = ω3(ε) = ω3(ε
′) = −∞.

We see that ω4(ε
′) ≤ ω4(ε) with equality if and only if η0 = −q/2 + 1.

We note that εm−1 = q/2 cannot happen (either since m = 0 or since rule (2.6) would
have been applied), therefore, the positions of blocks (q/2, q/2) have not been changed,
and we obtain ω5(ε

′) = ω5(ε) and ω6(ε
′) = ω6(ε).

Let s := −ω7(ε). Obviously s ≤ m. If s ≥ m − 1 then we have −ω7(ε
′) > s, otherwise,

we have −ω7(ε
′) = s, but ω8(ε) = m + 1 > ω8(ε

′) = m− 1. Therefore, (2.16) is proved for
rule (2.9).

Since the maximum length of the occurring representations is bounded by c(ε(0)), ω(ε(i))
lies in the finite set

{−∞,−c(ε(0)), . . . , 0, . . . , c(ε(0)),∞}8

for i ≥ 0 and there must be an m ≥ 0 with the required properties. �

Lemma 2. Let n, q be fixed and ε ∈ Rq(n) be reduced. Let a := n mod q and b :=
(n− a)/q mod q. Then

ε0 =

{

a if a < q/2 or (a = q/2 and b < q/2) or n ∈ {(q + 1)/2, q/2 + q2/2},

a− q otherwise.
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Proof. From
a ≡ n ≡ ε0 (mod q),

|ε0| < q and rules (2.2) and (2.3) we obtain that either ε0 = a or ε0 = a− q.
We note that by rules (2.2) and (2.3) and n > 0 we have |ε0| ≤ q/2 except when l = 0

and ε0 = n = (q + 1)/2 = a.
Let a < q/2. Since a− q < −q/2, we get ε0 = a.
Let a = q/2 and b < q/2. If ε0 = a − q = −q/2, then by rule (2.7) we have l = 0

(which is impossible since n > 0) or ε1 ≤ 0. Since ε1 ≡ b + 1 (mod q), this implies
ε1 = b + 1− q < −q/2 + 1 (since n > 0, this implies l ≥ 2) and therefore ε1 = −q/2. Rule
(2.9) leads to a contradiction, which yields ε0 = a.

If n = (q + 1)/2 and ε0 = a− q = −(q − 1)/2, then we obtain
∑l−1

i=0 εi+1q
i = 1. We note

that from

ql−1 ≤
∣

∣εlq
l−1
∣

∣ =

∣

∣

∣

∣

∣

1−

l−2
∑

i=0

εi+1q
i

∣

∣

∣

∣

∣

≤ 1 +
q

2
·
ql−1 − 1

q − 1
,

we get l ≤ 1 (because 2 - q and therefore q ≥ 3), which implies l = 1 and ε1 = 1. This is a
contradiction to rule (2.4), which shows ε0 = a.

Consider now the case a > q/2. ε0 = a yields l = 0, ε0 = n = (q + 1)/2, which has been
considered above. Therefore ε0 = a− q.

We turn to the case a = q/2 and b ≥ q/2. If ε0 = a = q/2 then b ≡ ε1 (mod q). By rule
(2.6) we get ε1 ≥ 0 which implies ε1 = b ≥ q/2 and therefore ε1 = q/2. By rules (2.8) and
(2.10) this leads to n = q/2 + q2/2.

Finally, we have to consider n = q/2 + q2/2. If ε0 = a − q = −q/2, then we get
∑l−1

i=0 εi+1q
i = q/2 + 1, i. e. ε′ = (ε1, . . . , εl) ∈ Rq(q/2 + 1) and ε′ is reduced. By the

proven parts of this lemma, this implies (ε1, . . . , εl) = (−q/2 + 1, 1) and therefore ε =
(−q/2,−q/2 + 1, 1), which is a contradiction to rule (2.5). �

Algorithm 1 Computation of the reduced minimal representation of n

Input: n > 0, q ≥ 2 integers.
Output: ε ∈ Rq(n) such that c(ε) = min{c(ε′) : ε′ ∈ Rq(n)} and ε is reduced.

ε← ()
m← n
while m > 0 do

a← (m mod q).
if not (a < q/2 or (a = q/2 and {m/q2} < 1/2) or m = (q+1)/2 or m = q/2+q2/2)
then

a← a− q
end if

m← (m− a)/q
ε← ε & a

end while
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Theorem 1. Let q ≥ 2 and n > 0 be integers. Then there is a unique reduced representa-
tion ε ∈ Rq(n); this representation is minimal with respect to (1.2), and it can be computed
by Algorithm 1.

Proof. The existence follows from Lemma 1 applied to any representation of n.
Let ε = (ε0, . . . , εl) ∈ Rq(n) be a reduced representation. By Lemma 2, ε0 is uniquely

given in terms of n. Additionally, ε′ := (ε1, . . . , εl) ∈ Rq((n−ε0)/q) is reduced. By iterating
Lemma 2 we see that all digits are uniquely determined by n, which proves uniqueness.

Since {n/q2} = (a + bq)/q2 (where a and b are defined as in Lemma 2), we obtain that
{n/q2} < 1/2 if and only if b < q/2 (if 2 | q; otherwise, we never have to consider a digit
q/2); and therefore, Algorithm 1 computes the reduced representation of n.

Let ε′ ∈ Rq(n) be a representation of n with minimum costs. Construct the sequence ε′(i)

as in Lemma 1. By this lemma, there is some m ≥ 0 such that fm(ε′) = ε and c(ε) ≤ c(ε′).
Therefore, ε has minimum costs. �

3. Relaxed Reduced Representations

If we are looking for minimal representations with respect to (1.3), the main ideas of the
previous section remain the same, so we will only sketch the differences.

Since the length of a representation is not important, we may think of a representation
as of an infinite sequence of integers with finitely many non-zero entries. This implies that
we do not have to consider the reduction rules which could only be applied at the end.

Therefore, we define f ′ : Rq(n) → Rq(n) by the reduction rules (as in the previous
section, we have to apply the first rule which matches) (2.2), (2.6), (2.7), (2.8) and (2.9).
A representation ε is called relaxed reduced, if f ′(ε) = ε and (if written as a finite sequence)
ε has no trailing zeros. It is easily seen that ε is relaxed reduced if and only if the following
conditions are satisfied:

(3.1) There are no trailing zeros.
(3.2) −q/2 ≤ εi ≤ q/2 for i ≥ 0.
(3.3) If εi = q/2 then 0 ≤ εi+1 ≤ q/2− 1.
(3.4) If εi = −q/2 then −q/2 + 1 ≤ εi+1 ≤ 0.

In the proof of the analogue of Lemma 1, the length of the representations is not bounded
a priori by c′(ε0). However, if the sequence does not terminate, then there are some M and
i0 ∈ N such that c′(ε(i)) = M for all i ≥ i0. We note that there cannot be any j such that
∣

∣ε
(i)
j

∣

∣ ≥ q for i ≥ i0 since we could apply rule (2.2) and the costs would strictly decrease in

this case. Therefore, let li := max{j ∈ N : ε
(i)
j 6= 0}, and we get

qli ≤ n + (q − 1)

li−1
∑

j=li−M−1

qj = n + qli − qli−M+1.

This implies l ≤M − 1 + logq n, i. e. ω(ε(i)) lies in the finite set

{−∞,−c(ε(0))−
⌊

logq |n|
⌋

+ 1, . . . , 0, . . . , c(ε(0)) +
⌊

logq |n|
⌋

− 1,∞}8
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for i ≥ i0, which leads to a contradiction, and the analogue of Lemma 1 is proved.
The analogue of Lemma 2 is

Lemma 3. Let n, q be fixed and ε ∈ Rq(n) be relaxed reduced. Let a := n mod q and
b := (n− a)/q mod q. Then

ε0 =

{

a if a < q/2 or (a = q/2 and b < q/2),

a− q otherwise, i. e. if a > q/2 or (a = q/2 and b ≥ q/2).

Algorithm 2 Computation of the relaxed reduced minimal representation of n

Input: n > 0, q ≥ 2 integers.
Output: ε ∈ Rq(n) such that c′(ε) = min{c′(ε′) : ε′ ∈ Rq(n)} and ε is relaxed reduced.

ε← ()
m← n
while m > 0 do

a← (m mod q).
if a > q/2 or (a = q/2 and {m/q2} ≥ 1/2) then

a← a− q
end if

m← (m− a)/q
ε← ε & a

end while

This leads to the following result:

Theorem 2. Let q ≥ 2 and n > 0 be integers. Then there is a unique relaxed reduced
representation ε ∈ Rq(n); this representation is minimal with respect to (1.3), and it can
be computed by Algorithm 2.

Finally, we have to clarify the relation between the relaxed reduced and the reduced
representations:

Theorem 3. Let q ≥ 2 and n > 0 be integers and ε = (ε0, . . . , εl) and ε′ = (ε′0, . . . , ε
′
l′) the

reduced and the relaxed reduced representation of n, respectively.
Then we have the following relations

ε =











(ε′0, . . . , ε
′
l′−2, (q + 1)/2) if (ε′l′−1, ε

′
l′) = (−(q − 1)/2, 1),

(ε′0, . . . , ε
′
l′−3, q/2, q/2) if (ε′l′−2, ε

′
l′−1, ε

′
l′) = (−q/2,−q/2 + 1, 1),

ε′ otherwise,

(3.5)

ε′ =











(ε0, . . . , εl−1,−(q − 1)/2, 1) if εl = (q + 1)/2,

(ε0, . . . , εl−2,−q/2,−q/2 + 1, 1) if (εl−1, εl) = (q/2, q/2),

ε otherwise.

(3.6)
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Proof. It is obvious that f(ε′) = ε′ unless ε′ corresponds to one of the two exceptional
cases in (3.5), in which f(ε′) is the expression on the right hand side of (3.5). To see that
this expression is indeed reduced, we note that the only rules which might apply are (2.10)
and (2.7), but this cannot be the case since ε′ was relaxed reduced which implies that
ε′l′−3 /∈ {±q/2}. The other direction follows easily. �

4. Explicit Formula for the Digits for Odd q

Theorem 4. Let q ≥ 3 be odd and n be a positive integer. Let

εr := b(r)
q (2n)− b(r)

q (n), r ≥ 0,

where b
(r)
q (n) is the r-th digit of the “usual” q-adic expansion of n, i. e.

b(r)
q (n) =

⌊

n

qr

⌋

− q

⌊

n

qr+1

⌋

,

and l := max{r ≥ 0 : εr 6= 0}. Then ε = (ε0, . . . , εl) is the relaxed reduced minimal
representation.

Proof. By definition, we have

εr = b(r)
q (2n)− b(r)

q (n) =

⌊

2n

qr

⌋

− q

⌊

2n

qr+1

⌋

−

⌊

n

qr

⌋

+ q

⌊

n

qr+1

⌋

=

⌊

2q
n

qr+1

⌋

− q

⌊

2
n

qr+1

⌋

−

⌊

q
n

qr+1

⌋

+ q

⌊

n

qr+1

⌋

.

For any positive integer a and any real number x the relation

(4.1) baxc =

a−1
∑

i=0

⌊

x +
i

a

⌋

is well-known (see for instance [8, 3.26]). Setting x := n/qr+1 we obtain

εr =

2q−1
∑

l=0

⌊

x +
l

2q

⌋

− q

(

bxc +

⌊

x +
1

2

⌋)

−

q−1
∑

l=0

⌊

x +
l

q

⌋

+ q bxc

= −(q − 1)

⌊

x +
1

2

⌋

+

q−1
∑

m=0
m6=(q−1)/2

⌊

x +
2m + 1

2q

⌋

.

Let 0 ≤ j ≤ q such that

2j − 1

2q
≤ {x} <

2j + 1

2q
.
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Then
q−1
∑

m=0

⌊

x +
2m + 1

2q

⌋

= q bxc+ j

q

⌊

x +
1

2

⌋

= q bxc+ q

[

j ≥
q + 1

2

]

,

which shows that

(4.2) −
q − 1

2
≤ εr ≤

q − 1

2
.

By construction, εr ∈ Rq(n). By (3.2) and (4.2) we see that εr is the relaxed reduced
representation of n. �

5. Explicit Formula for the Digits for Even q

We derive a formula for the digits of the relaxed reduced expansion (which yields a
formula for the reduced expansion by Theorem 3), which will enable us to study the
distribution of the digits in the next section.

Theorem 5. Let q ≥ 2 be even. For r ≥ 0 define

(5.1)

εr :=

q/2−1
∑

i=0

(

q/2−1
∑

j=0

⌊

n

qr+2
+

1 + q
2

+ (q + 1)(iq + j)

q2(q + 1)

⌋

−(q − 1)

⌊

n

qr+2
+

q
2

+ (q + 1)(iq + q/2)

q2(q + 1)

⌋

+

q−1
∑

j=q/2+1

⌊

n

qr+2
+

q
2

+ (q + 1)(iq + j)

q2(q + 1)

⌋

)

+

q−1
∑

i=q/2

(

q/2−2
∑

j=0

⌊

n

qr+2
+

1 + q
2

+ (q + 1)(iq + j)

q2(q + 1)

⌋

−(q − 1)

⌊

n

qr+2
+

1 + q
2

+ (q + 1)(iq + q/2− 1)

q2(q + 1)

⌋

+

q−1
∑

j=q/2

⌊

n

qr+2
+

q
2

+ (q + 1)(iq + j)

q2(q + 1)

⌋

)

.

Let l := max{r ≥ 0 : εr 6= 0}. Then ε = (ε0, . . . , εl) ∈ Rq(n) is the relaxed reduced minimal
representation.

Example 1. For q = 2, (5.1) is

(5.2) εr =

⌊

n

2r+2
+

5

6

⌋

−

⌊

n

2r+2
+

4

6

⌋

−

⌊

n

2r+2
+

2

6

⌋

+

⌊

n

2r+2
+

1

6

⌋

,
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which is the formula also obtained in [15] (cf. Section 7).

Example 2. It is perhaps a good idea to explain what the formula (5.1) does, which we will
do for the instance q = 6:

εr = +

⌊

y +
248

252

⌋

+

⌊

y +
241

252

⌋

+

⌊

y +
234

252

⌋

− 5

⌊

y +
228

252

⌋

+

⌊

y +
221

252

⌋

+

⌊

y +
214

252

⌋

+

⌊

y +
206

252

⌋

+

⌊

y +
199

252

⌋

+

⌊

y +
192

252

⌋

− 5

⌊

y +
186

252

⌋

+

⌊

y +
179

252

⌋

+

⌊

y +
172

252

⌋

+

⌊

y +
164

252

⌋

+

⌊

y +
157

252

⌋

+

⌊

y +
150

252

⌋

− 5

⌊

y +
144

252

⌋

+

⌊

y +
137

252

⌋

+

⌊

y +
130

252

⌋

+

⌊

y +
122

252

⌋

+

⌊

y +
115

252

⌋

− 5

⌊

y +
108

252

⌋

+

⌊

y +
102

252

⌋

+

⌊

y +
95

252

⌋

+

⌊

y +
88

252

⌋

+

⌊

y +
80

252

⌋

+

⌊

y +
73

252

⌋

− 5

⌊

y +
66

252

⌋

+

⌊

y +
60

252

⌋

+

⌊

y +
53

252

⌋

+

⌊

y +
46

252

⌋

+

⌊

y +
38

252

⌋

+

⌊

y +
31

252

⌋

− 5

⌊

y +
24

252

⌋

+

⌊

y +
18

252

⌋

+

⌊

y +
11

252

⌋

+

⌊

y +
4

252

⌋

,

where y = n/6r+2.
Let us think about y as a real variable. It is plain to see that the expression with q2

terms is periodic in y. For y = 0 it is 0; when y reaches 4
252

, the first term changes to

1; when y reaches 11
252

, the second term also changes to 1, and so on. Accordingly, the
digit changes from 0 to 1, then to 2, then to 3, then to −2,−1, 0. That describes the first
line of terms. This patterns repeats twice, but then in the second half the general pattern
switches from 0, 1, 2, 3,−2,−1 to 0, 1, 2,−3,−2,−1. The digits 0, 1, 2, 3,−2,−1 are not
symmetric around 0, and 0, 1, 2,−3,−2,−1 are not, either. However, in combination, both
coming with “probability” 1

2
, the distribution of the digits becomes symmetric.

Proof. We rewrite (5.1) as
(5.3)

εr =

q−1
∑

i=0

q−1
∑

j=0

⌊

n

qr+2
+

j

q2
+

[j < q/2] + q/2

q2(q + 1)
+

i

q

⌋

− q

q−1
∑

i=0

⌊

n

qr+2
+

i

q
+

[i < q/2] + q/2

q(q + 1)

⌋

.

Interchanging the order of summation in the first part, using (4.1), renaming i to j in the
second part and collecting the two resulting sums, we get

εr =

q−1
∑

j=0

(⌊

n

qr+1
+

j

q
+

[j < q/2] + q/2

q(q + 1)

⌋

− q

⌊

n

qr+2
+

j

q
+

[j < q/2] + q/2

q(q + 1)

⌋)

.

Therefore, we calculate that

(5.4)
∞
∑

r=0

εrq
r =

q−1
∑

j=0

⌊

n

q
+

j

q
+

[j < q/2] + q/2

q(q + 1)

⌋

.
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We write n = t + sq for 0 ≤ t < q and observe that for an integer 0 ≤ m < 2q and for
σ ∈ {0, 1}

⌊

m

q
+

σ + q/2

q(q + 1)

⌋

= [m ≥ q] .

Evaluating (5.4) in this way we obtain

(5.5)

∞
∑

r=0

εrq
r =

q−1
∑

j=0

(s + [j ≥ q − t]) = n,

and we proved that ε = (ε0, . . . , εl) ∈ Rq(n) is indeed a representation of n.
In order to investigate further properties of ε we fix some r ≥ 0, write x := {n/qr+2}

and define

(5.6) ξi,j :=
[j < q/2] + q/2 + (q + 1)(iq + j)

q2(q + 1)
and hi,j := bx + ξi,jc

for i, j ∈ {0, . . . , q − 1}. We note that for (i, j) <lex (i′, j ′) we have 0 < ξi,j < ξi′,j′ < 1 and
rewrite (5.1) as

εr =

q

2
−1
∑

i=0

(

hi,0 + . . . + hi, q

2
−2 + hi, q

2
−1 −(q − 1) hi, q

2

+ hi, q

2
+1 + . . . + hi,q−1

)

+

q−1
∑

i= q

2

(

hi,0 + . . . + hi, q

2
−2 −(q − 1) hi, q

2
−1 + hi, q

2

+ hi, q

2
+1 + . . . + hi,q−1

)

.

Choose (i0, j0) lexicographically minimal such that x + ξi0,j0 ≥ 1 — if x + ξq−1,q−1 < 1
then we set (i0, j0) := (∞,∞) —, which implies that hi,j = [(i, j) ≥lex (i0, j0)] and therefore

(5.7) εr =






hi0,0 + . . . + hi0, q

2
−2 + hi0, q

2
−1 −(q − 1) hi0, q

2

+ hi0, q

2
+1 + . . . + hi0,q−1 if i0 < q

2

hi0,0 + . . . + hi0, q

2
−2 −(q − 1) hi0, q

2
−1 + hi0, q

2

+ hi0, q

2
+1 + . . . + hi0,q−1 if i0 ≥

q
2

0 if i0 =∞.

From (5.7) we see that |εr| ≤ q/2 and that

(5.8)
εr = q/2 ⇐⇒ j0 = q/2 and i0 ≥ q/2

εr = −q/2 ⇐⇒ j0 = q/2 and i0 < q/2.

Assume j0 = q/2. By definition of (i0, j0) and by (5.6) this implies that
⌊

n

q2+r

⌋

+ 1−
i0
q
−

q + 2

2q(q + 1)
≤

n

q2+r
<

⌊

n

q2+r

⌋

+ 1−
i0
q
−

1

2(q + 1)
.

Dividing by q, denoting x′ := {n/q3+r} and ar+2 := bn/q2+rc − q bn/q3+rc — we remark
that 0 ≤ ar+2 < q —, we obtain

(5.9)
ar+2 + 1

q
−

i0
q2
−

q + 2

2q2(q + 1)
≤ x′ <

ar+2 + 1

q
−

i0
q2
−

1

2q(q + 1)
.



12 CLEMENS HEUBERGER AND HELMUT PRODINGER

Define

(5.10) (i1, j1) :=



















(q − 1− ar+2, i0 + 1) if q/2 ≤ i0 < q − 1

(q − ar+2, 0) if i0 = q − 1 and ar+2 6= 0

(∞,∞) if i0 = q − 1 and ar+2 = 0

(q − 1− ar+2, i0) if 0 ≤ i0 < q/2.

Using (5.9) we check that in all cases, (i1, j1) is lexicographically minimal such that x′ +
ξi1,j1 ≥ 1. From (5.8), (5.10), and (5.7) we can deduce that

(5.11)
εr = q/2 =⇒ εr+1 ∈ {0, . . . , q/2− 1}

εr = −q/2 =⇒ εr+1 ∈ {−q/2 + 1, . . . , 0}.

From the fact that |εi| ≤ q/2, (5.11), (3.2), (3.3), and (3.4), we conclude that ε is indeed
the relaxed reduced expansion. �

6. Counting Digits in the Minimal Representations

We are interested to count how often a given digit i occurs in the relaxed reduced
expansion among the numbers 1, . . . , n; call that #i(n). By Theorem 3 the corresponding
values for the reduced expansion will differ by at most 2n, which will not appear in the
main term of the asymptotic formula anyway.

In the case q odd, the reduced representation is actually the (q, d) representation, with
d = − q−1

2
, and digits d, d + 1, . . . , d + q − 1. Digit counting in this representation is well

known, see [12]. Every digit occurs with the same frequency 1
q
, and

(6.1) #i(n) =
1

q
n logq n +O(n).

Actually, more is known about the error term. It can be made fully explicit and is basically
given by n times a periodic function in logq n. Here, we don’t bother to compute the
periodic functions in detail.

Summing (6.1), (multiplied by |i|), over all possible digits i, we get the average value of
c′(ε). It is

(

q

4
−

1

4q

)

logq n +O(1);

the constant is computed via

2

(q−1)/2
∑

i=1

i
1

q
.

In the instance q even, things are a bit more complicated, but fortunately not by much.
The formula (5.1) tells us that digit 0 occurs with frequency q+2

q(q+1)
, digits ±1, . . . ,± q

2
− 1

with frequency 1
q
, digits ± q

2
each with frequency 1

2(q+1)
. So we see that digit 0 appears a
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bit more often than the other digits, and the digits ± q
2

(combined) appear a bit less often
than the other digits. In terms of costs, this is fortunate. Anyway, it leads to

#0(n) =
q + 2

q(q + 1)
n logq n +O(n),

#i(n) =
1

q
n logq n +O(n), for i = ±1, . . . ,±

q

2
− 1,

#i(n) =
1

2(q + 1)
n logq n +O(n), for i = ±

q

2
.

Again, summing this, (multiplied by |i|), over all possible digits i, we get the average
value of

∑

|εi|:

(

q

4
−

1

2(q + 1)

)

logq n +O(1).

The computation of the constant is done via

2

q/2−1
∑

i=1

i
1

q
+ 2

q

2

1

2(q + 1)
.

The average length of the representation is given by logq n +O(1).
We sum up these results in the following theorem:

Theorem 6. Let q ≥ 2 and n ≥ 1. Then the average costs c(ε) of the reduced expansions
of the integers 1, . . . , n are

(

1 +
q

4
−

1

2(q + 1)

)

logq n +O(1) if q is even,

(

1 +
q

4
−

1

4q

)

logq n +O(1) if q is odd.

7. Previous Work

We start our overview on related papers with the relaxed reduced expansion for q = 2.
In this case, (3.2), (3.3), and (3.4) are clearly equivalent to εi ∈ {0,±1} and εiεi+1 = 0.
This means that for q = 2 our relaxed reduced expansion is the so-called “non-adjacent-
form” (NAF) or “sparse signed digit representation” or “balanced binary representation”
or “Paul representation” (cf. Güntzer and Paul [9]) or “canonical Booth recoding” which
has been studied — at least partly independently — by several authors; we refer to [2,
IV.2.4] and [7] for some references. It goes back at least to Reitwiesner [16], who proved
existence and uniqueness of a NAF and that it has minimum c′. Jedwab and Mitchell [11]
describe an algorithm which computes the NAF from every redundant binary expansion
with digits 0,±1.

Morain and Olivos [14] first applied the idea to elliptic curves as sketched in the in-
troduction and empirically found two algorithms, which yield good results. Actually, the
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second of these algorithms leads exactly to the NAF, therefore, Morain and Olivos reach
the minimum c′ (and by Theorem 3 the minimum c by up to one). They give the main
term of the expected costs (as in our calculations in Section 6), whereas Thuswaldner [17]
gives a further asymptotic term. Further properties of the NAF have been described by
the second author in [15].

Demetrovics, Pethő, and Rónyai [6] take up Morain and Olivos’ motivation and consider
c for q = 2. They translate the minimization problem into an infinite graph where minimal
expansions correspond to shortest paths and apply Dijkstra’s algorithm to the solution of
the problem. This has been generalized to general q by the first author in [10], and it was
proved that there exists a minimal expansion such that |εi| ≤ q/2, which characterizes
the case of odd q almost completely. It is worth noting that [10, Algorithm 1] is not
guaranteed to yield an expansion with digits |εi| ≤ q/2 because the choice between two
paths of equal length leading to the same vertex is made arbitrarily. If expansions with
small digits are preferred, then the algorithm yields the reduced representation of our
Algorithm 1. Of course, both algorithms need O(logq n) time, computational experiments
show that Algorithm 1 is faster by a factor of 3.

Another generalization of the non-adjacent-form to arbitrary bases is described in Clark
and Liang [4], see also Arno and Wheeler [1]. It is unique, minimizes c′′(ε) := card{i :
εi 6= 0} (the Hamming Weight) and can be computed from the usual q-adic expansions of
(q + 1)/q and 1/q, similarly to our Theorem 4. In the case q = 2, this property goes back
to Chang and Tsao-Wu [3].

The generalized NAF (GNAF) and our reduced expansions were designed for different
cost functions, however, it may be instructive to compare how the two expansions behave
with respect to both cost functions. To this aim, we calculate an explicit formula for the
r-th digit of the GNAF as we did it for the reduced expansion in Section 4 and we follow
the lines of Section 6. The result is shown in Table 1.

Expansion Expected c′(ε) Expected c′′(ε)

Clark and Liang
q − 1

3
logq n +O(1)

(

1−
2

q + 1

)

logq n +O(1)

Relaxed Reduced, even q

(

q

4
−

1

2(q + 1)

)

logq n +O(1)

(

1−
q + 2

q(q + 1)

)

logq n +O(1)

Relaxed Reduced, odd q

(

q

4
−

1

4q

)

logq n +O(1)

(

1−
1

q

)

logq n +O(1)

Table 1. Comparison of the GNAF and the relaxed reduced expansion
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