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ON PLANARITY AND COLORABILITY OF CIRCULANT GRAPHS

CLEMENS HEUBERGER

Abstract. For given postive integers n, a1, . . . , am we consider the undirected circulant graph
G = (V, E) with set of vertices V = {0, . . . , n − 1} and set of edges E = {[i, j] : i − j ≡ ±ak

(mod n) for some 1 ≤ k ≤ m}.
We prove that G is planar if m = 1 and non-planar if m ≥ 3. For m = 2 we completely

characterize planarity.
It is shown that G is bipartite if and only if there is an l such that 2l divides a1, . . . , am ,

2l+1 | n, but 2l+1
�
aj for 1 ≤ j ≤ m.

If m ≤ 2, we also calculate the chromatic number of G.

1. Introduction

Let n, m and a1, . . . , am be positive integers. An undirected graph with set of vertices V =
{0, . . . , n − 1} and set of edges E = {[i, i + aj mod n] : 0 ≤ i ≤ n − 1, 1 ≤ j ≤ m} is called
a (symmetric) circulant graph, since the adjacency matrix of such a graph is usually called a
circulant matrix, and it is denoted by Cn(a1, . . . , am).

Since we defined an undirected graph, we also have [i, i − aj mod n] ∈ E for all 0 ≤ i ≤ n − 1
and 0 ≤ j ≤ m. If ak 6≡ ±al (mod n) for all 1 ≤ k, l ≤ m, Cn(a1, . . . , am) is regular of degree δ,
where

δ =

{

2m if aj 6≡ n/2 (mod n) for all 1 ≤ j ≤ m,

2m − 1 otherwise.

The aim of this paper is to investigate graph theoretic properties of circulant graphs. It is a
well-known (and easy-to-prove) fact that a circulant graph Cn(a1, . . . , am) is connected if and only
if

(1) gcd(a1, . . . , am, n) = 1;

more precisely, it has gcd(a1, . . . , am, n) isomorphic connected components. We refer to Boesch
and Tindell [1] for further results concerning connectivity of circulant graphs.

Hamiltonicity properties of circulant graphs have been studied by Burkard and Sandholzer [3]
who prove that a circulant graph is Hamiltonian if and only if it is connected. For the case of
directed circulant graphs with two stripes we refer to Yang, Burkard, Çela, and Woeginger [11].

In this paper, we will deal with planarity (Section 4), bipartiteness (Section 2) and the chromatic
number (Section 3) of circulant graphs. The first two questions will be fully answered, for the
chromatic number we restrict ourselves to the case m ≤ 2.

A related family of graphs are Toeplitz graphs: Let n, m and 1 ≤ a1, . . . , am < n be positive
integers. An undirected graph with set of vertices V = {0, . . . , n − 1} (or V = N) and set of
edges E = {[i, i + aj ] : i, i + aj ∈ V, 1 ≤ j ≤ m} is called a finite (or infinite) Toeplitz graph,
respectively. It is denoted by Tn(a1, . . . , am) (or T∞(a1, . . . , am)). It is clear that Cn(a1, . . . , am) =
Tn(a1, n − a1, a2, n − a2, . . . , am, n − am).

Bipartiteness of Toeplitz graphs can be decided if V = N (cf. Euler, Le Verge, and Zam-
firescu [8]) or if n < ∞ and m = 2 (cf. Euler [7]). Some necessary and sufficient conditions for
bipartiteness for the case n < ∞ and m = 3 are also given in [7].

Planarity of infinite Toeplitz graphs is decided in Euler [6], where the chromatic number of
planar infinite Toeplitz graphs (we remark that planarity implies m ≤ 3) is also determined.

The author has been partially supported by the Spezialforschungsbereich F 003 “Optimierung und Kon-
trolle”/Projektbereich Diskrete Optimierung.
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Similarly, infinite Toeplitz graphs over V = Z have been studied; we refer to Eggleton, Erdős,
and Skilton [5], Walther [10], and Chen, Chang, and Huang [4] and the references therein.

In the remainder of this paper, we will consider circulant graphs Cn(a1, . . . , am) which we will
assume to be properly given, i. e., ai 6≡ ±aj (mod n) for i 6= j. In view of (1) we will also
assume that d := gcd(a1, . . . , am, n) = 1 since Cn(a1, . . . , am) is bipartite (planar, k-colorable)
if and only if its connected components are; and these connected components are isomorphic to
Cn/d(a1/d, . . . , am/d).

We define a mod n to be the unique integer r ∈ {0, . . . , n− 1} such that a ≡ r (mod n). For a
prime number p we will denote the p-adic valuation by vp, i. e., for any integer k, vp(k) is defined
to be the largest l ∈ Z such that pl | k. We recall that for all integers k1, k2

vp(k1 + k2) ≥ min{vp(k1), vp(k2)},(2a)

vp(k1 + k2) = min{vp(k1), vp(k2)} if vp(k1) 6= vp(k2),(2b)

vp(k1 · k2) = vp(k1) + vp(k2).(2c)

2. Bipartiteness

Bipartite circulant graphs can be characterized as follows:

Theorem 2.1. Let G := Cn(a1, . . . , am) be a connected circulant. Then G is bipartite if and only
if

(3) a1, . . . , am are odd and n is even.

Proof. Obviously, G is bipartite if and only if there is no odd cycle, i. e., there are no x0, . . . , xm ∈ Z
with

∑m
i=1 xi ≡ 1 (mod 2) and

(4) x0n +

m
∑

i=1

aixi = 0.

Equivalently (defining u by
∑m

i=1 xi = 2u + 1 and eliminating xm from this equation and (4)),
there are no x0, x1, . . . , xm−1, u ∈ Z such that

x0n +

m−1
∑

i=1

xi(ai − am) + 2amu = −am.

We conclude that G is bipartite if and only if

(5) d′ := gcd(n, a1 − am, . . . , am−1 − am, 2am) - am.

Let p 6= 2 be a prime. From vp(2) = 0 and (2) we obtain

vp(d
′) = min{vp(n), vp(a1 − am), . . . , vp(am−1 − am), vp(am)}

≥ min{vp(n), vp(a1), . . . , vp(am)} = vp(gcd(n, a1, . . . , am)) = vp(1) = 0

≥ min{vp(n), vp(a1 − am), vp(am), vp(a2 − am), vp(am), . . . , vp(am−1 − am), vp(am)}

= vp(d
′).

This shows that (5) is equivalent to

(6) v2(d
′) > v2(am).

Assume now that G is bipartite and therefore (6) holds. By definition of d′ this implies v2(ai −
am) ≥ v2(d

′) > v2(am) for 1 ≤ i ≤ m − 1. If v2(ai) 6= v2(am) for some i, (2b) shows that
v2(am) ≥ min{v2(ai), v2(am)} = v2(ai − am) > v2(am), which is a contradiction. It follows that
v2(a1) = v2(a2) = · · · = v2(am). In addition, we see v2(n) ≥ v2(d

′) > v2(am) which proves (3)
since we assumed that G is connected.

Conversely, assume (3). This immediately implies v2(ai − am) ≥ 1 for 1 ≤ i ≤ m − 1 and
therefore

v2(d
′) = min{v2(n), v2(a1 − am), . . . , v2(am−1 − am), v2(am) + 1} ≥ 1 > v2(am) = 0,

which yields (6). �
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3. Chromatic Number

This section is devoted to the calculation of the chromatic number χ(G) for circulant graphs
with m ≤ 2, i. e., the minimum number of colors needed to color the vertices of G such that
adjacent vertices do not have the same color.

Of course, the case m = 1 is trivial, however, we state it for the sake of completeness:

Theorem 3.1. Let G := Cn(a) be a properly given connected circulant graph. Then

χ(G) =

{

2 n is even,

3 n is odd.

The proof of the following theorem for m = 2 will be the content of this section:

Theorem 3.2. Let G := Cn(a, b) be a properly given connected circulant graph. Then

(7) χ(G) =































2 if a and b are odd and n is even,

4 if 3 - n, n 6= 5, and (b ≡ ±2a (mod n) or a ≡ ±2b (mod n)),

4 if n = 13 and (b ≡ ±5a (mod 13) or a ≡ ±5b (mod 13)),

5 if n = 5,

3 otherwise.

The case χ(G) = 2 is fully characterized by Theorem 2.1. To get an upper bound for χ(G), we
use the following result:

Lemma 3.3 (Brooks [2]). Let G be a graph such that all vertices have degree at most d > 2 and
such that none of its connected components is a complete graph of order d + 1. Then χ(G) ≤ d.

Hence, Cn(a, b) can certainly be colored with 4 colors unless n = 5, where the only properly
given circulant is C5(1, 2) = K5 which has chromatic number 5.

Therefore we only have to decide which Cn(a, b) can be colored with 3 colors. This will mostly
be done by an explicit construction of a 3-coloring using the colors B (black or blue, as you like),
G (green) and R (red) (or sometimes simply 0, 1, 2).

These colorings will usually be given as elements of the free semigroup generated by {B, G, R},
for instance, ((BG)2R)3BR has to be read as BGBGRBGBGRBGBGRBR. We define the
rotation by l of such a word as follows:

x0x1 . . . xr−1 rot l := xr−lxr−(l−1) . . . xr−1x0x1 . . . xr−l−1.

We will use the following isomorphism several times:

Lemma 3.4. Let Cn(a, b) be a properly given circulant and gcd(a, n) = 1. Then the graph Cn(a, b)
is isomorphic to the graph Cn(1, a−1b mod n).

Proof. Trivial. �

3.1. Special case: Cn(1, a) with gcd(a, n) = 1. In view of Lemma 3.4, we will first consider
the special case of G = Cn(1, a) with gcd(a, n) = 1. If n is even, a has to be odd, and χ(G) = 2
by Theorem 2.1. In the remainder of this subsection, we will focus on the case of odd n. Since
Cn(1, a) = Cn(1, n − a) we may restrict ourselves to the case 2 ≤ a ≤ (n − 1)/2.

Lemma 3.5. Let n be odd and a ∈ {2, (n − 1)/2}. Then G = Cn(1, a) is 3-colorable if and only
if 3 | n.

Proof. Consider first a = 2 and let c : V → {0, 1, 2} be a 3-coloring of G. Without loss of
generality, we have c(0) = 0 and c(1) = 1. We claim that for 0 ≤ k < n, c(k) = k mod 3. Assume
that the claim is true for 0 ≤ k − 1, k < n − 1. Since [k, k + 1] ∈ E and [k − 1, k + 1] ∈ E, we get
c(k+1) 6= c(k) = k mod 3 and c(k+1) 6= c(k−1) = k−1 mod 3, which implies c(k+1) = k+1 mod 3
and proves the claim. Since [n − 2, 0] ∈ E and [n − 1, 0] ∈ E, we get 0 6≡ n − 2 (mod 3) and
0 6≡ n − 1 (mod 3) and consequently 3 | n.

Conversely, if 3 | n, c(i) := i mod 3, 0 ≤ i < n, defines a valid 3-coloring of G.



4 CLEMENS HEUBERGER

Consider now a = (n−1)/2. Since gcd(a, n) = gcd((n−1)/2, (n+1)/2) = gcd((n−1)/2, 1) = 1
and since 2a ≡ −1 (mod n), Cn(1, a) is isomorphic to Cn(1,−2) = Cn(1, 2) by Lemma 3.4. This
graph has just been considered above. �

Lemma 3.6. Let n be odd and

(8) max

{

2,
n − 3

3

}

< a ≤
n − 3

2
.

Then Cn(1, a) is 3-colorable if and only if (n, a) 6= (13, 5).

Proof. Assume first (n, a) 6= (13, 5).
Write n = 2(a + 1) + 2s + 1 for some integer s with 0 ≤ s < a/2—this is possible by (8)—and

a = (2s + 3)q + t for some integers q and t with 0 ≤ t ≤ 2s + 2.
If t is odd, we use the coloring X := ((BG)s+1R)q(BG)(t−1)/2B((GR)s+1B)q+1(RB)(t−1)/2R.

It is easy to see that the length of X is indeed n and that this coloring handles edges [k, k + 1]
correctly; in order to verify edges [k, k + a], we calculate X rot a and see from

X = ((BG)s+1R)q(BG)(t−1)/2B((GR)s+1B)q(GR)(t−1)/2G(RG)s−((t−1)/2)RB(RB)(t−1)/2R,

X rota = ((GR)s+1B)q(RB)(t−1)/2R((BG)s+1R)q(BG)(t−1)/2B(GR)s−((t−1)/2)GR(GR)(t−1)/2B,

that the coloring is indeed valid. We will give many colorings of this shape, but we will restrict
ourselves to giving the coloring X itself (mostly in tabular form) and we will omit the (tedious)
routine verification as demonstrated in this example only.

The cases for even t are discussed in Table 3.1.

2 ≤ t ≤ 2s, 2 | t ((BG)s+1R)q(BG)t/2((RB)s+1G)q(RB)t/2(GR)s+1−(t/2)(BR)(t/2)−1BGR,
t = 0 ((BG)s+1R)q((GR)s+1B)q(RB)s+1G,
t = 2s + 2, s ≥ 1 ((BG)s+1R)2q+2(BG)sR,
t = 2s + 2, s = 0,
n ≥ 19 RBGBGRGR(BGR)((n−1)/6)−2GRBR(BGR)((n−1)/6)−2B.

Table 3.1. Lemma 3.6, t even

Let us now turn to the very special case n = 13 and a = 5. Assume that there is a 3-
coloring c : {0, . . . , 12} → {0, 1, 2} of C13(1, 5). Since 3 - n there must be some i such that
c((i − 1) mod 13) = c((i + 1) mod 13). Without loss of generality, we have c(0) = 0, c(1) =
1, c(2) = 0.

If we assume that c(12) = c(3) = 1, we get a contradiction as shown in Table 3.2, therefore
c(3) = 2 or c(12) = 2. By symmetry, we may assume c(3) = 2, which is lead to a contradiction in
Table 3.3.

[0, 8], [3, 8] ∈ E ⇒ c(8) = 2,
[8, 9], [1, 9] ∈ E ⇒ c(9) = 0,
[2, 7], [7, 8] ∈ E ⇒ c(7) = 1,
[7, 12] ∈ E ⇒Contradiction.

Table 3.2. Lemma 3.6, c(0) = c(2) = 0, c(1) = c(3) = c(12) = 1

�

Lemma 3.7. Let n be odd and

(9) 3 ≤ a ≤
n − 3

3
.

Then Cn(1, a) is 3-colorable.
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[0, 8], [3, 8] ∈ E ⇒ c(8) = 1,
[7, 8], [2, 7] ∈ E ⇒ c(7) = 2,
[7, 12], [12, 0] ∈ E ⇒ c(12) = 1,
[4, 12], [3, 4] ∈ E ⇒ c(4) = 0,
[4, 9], [8, 9] ∈ E ⇒ c(9) = 2,
[2, 10], [9, 10] ∈ E ⇒ c(10) = 1,
[5, 10], [4, 5] ∈ E ⇒ c(5) = 2,
[1, 6], [5, 6] ∈ E ⇒ c(6) = 0,
[3, 11], [6, 11] ∈ E ⇒ c(11) = 1,
[10, 11] ∈ E ⇒Contradiction.

Table 3.3. Lemma 3.6, c(0) = c(2) = 0, c(1) = 1, c(3) = 2

Proof. Let r := bn/(a + 1)c. Condition (9) implies that r ≥ 3.
Consider first the case 2 | a and 2 - r. We can write n = r(a + 1) + 2s for some 0 ≤ s ≤ a/2.

Table 3.4 proves the lemma in this case.

s ≤ (a/2) − 1 ((BG)a/2R)r−1(BR)sB(GR)a/2,

s = a/2 ((BG)a/2R)r−1B(GR)(a/2)−1BG(RB)(a/2)−1GR.

Table 3.4. Lemma 3.7, 2 | a, 2 - r, n = r(a + 1) + 2s

a odd (BG)(n−2a−1)/2B(RB)(a−1)/2R(GR)(a−1)/2G,

a even, r even ((BG)a/2R)r−2B(RB)s(GR)a/2BG(RB)(a/2)−1GR.

Table 3.5. Lemma 3.7, 2 | r(a + 1), n = r(a + 1) + 2s + 1

Otherwise, 2 | r(a + 1), and we can write n = r(a + 1) + 2s + 1 for some 0 ≤ s ≤ a/2. The
resulting cases are discussed in Table 3.5. �

This concludes the subsection on the special case Cn(1, a) with gcd(n, a) = 1.

3.2. Associated Hermite Normal Form. We will now describe how to associate a Hermite
Normal Form (HNF) to a circulant graph. This will enable us to describe a graph which is
isomorphic to the given circulant and which we will be able to color. Although we will only use
these results in the case m = 2, we will first work with arbitrary m, because this may be of
independent interest and seems to describe the structure in more detail.

We will use the notion of a HNF as it is defined in Schrijver [9, Chapter 4]: A rational matrix A
is in HNF if it has the form A =

(

B 0
)

, where B is a lower triangular, nonnegative, nonsingular
matrix, in which each row has a unique maximum entry, which is located on the main diagonal of
B.

Theorem 3.8. Let n > 0, a1, . . . , am be integers.
Then there is a unique matrix X ∈ Zm×m with entries xij such that

(10a) X is in HNF,
(10b) (a1, . . . , am) · X ∈ nZm,
(10c) xii = gcd(ai+1, . . . , am, n)/ gcd(ai, ai+1, . . . , am, n) for 1 ≤ i ≤ m.

Furthermore, this matrix has the following properties:
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(10d) If y1a1 + · · · + ymam ≡ 0 (mod n) for some integers y1, . . . , ym and j := min{i : n - yi},
then xjj | yj,

(10e) range
Z
(X) = {u ∈ Zm : (a1, . . . , am) · u ≡ 0 (mod n)}.

Proof. For 1 ≤ j ≤ m, we define dj := gcd(aj , . . . , am, n). We denote the columns of X by
x1, . . . , xm.

First, we prove that assuming (10a) and (10b), the three conditions (10c), (10d), and (10e) are
equivalent.

We show that (10c) implies (10d): Since

yjaj = y0n − yj+1aj+1 − · · · − ymam

for some integer y0, it follows that dj+1 | yjaj which leads to xjj = (dj+1/dj) | yj .
Next, let X be a matrix with properties (10a), (10b), and (10d) and let Λ := {u ∈ Zm :

(a1, . . . , am) · u ≡ 0 (mod n)}. Property (10b) implies that range
Z
(X) ⊆ Λ.

Assume that this is a proper inclusion, and choose some u ∈ Λ \ range
Z
(X) such that j :=

min{i : ui 6= 0} is maximal. By (10d), q := uj/xjj is an integer. We define v := u − qxj and note
that v ∈ Λ by (10b) and v1 = · · · = vj = 0. Therefore v ∈ range

Z
(X) by the choice of u. However,

this implies u ∈ range
Z
(X), a contradiction, which proves (10e).

Finally, assume that X fulfills (10a), (10b), and (10e) and let 1 ≤ i ≤ m. As in the proof
of (10d) above, we see that (di+1/di) | xii since (a1, . . . , am) · xi ≡ 0 (mod n). Conversely, let
yi := di+1/di. It follows that di+1 | aiyi. Therefore, there exist integers yi+1, . . . , ym such that
(0, . . . , 0, yi, yi+1, . . . , ym) ∈ Λ. Condition (10e) and the fact that X is lower triangular by (10a)
yield xii | yi = di+1/di, which proves (10c) and completes the proof of the equivalence of (10c),
(10d), and (10e).

Since there is only one HNF with Z-range Λ by Schrijver [9, Theorem 4.2], conditions (10)
describe a unique matrix.

Finally, we have to prove existence. Let Q = (q1, . . . , qm) ∈ Z(m+1)×m be a system of funda-
mental solutions to the linear Diophantine equation

a1x1 + · · · + amxm + nxm+1 = 0,

which can be calculated by Schrijver [9, Corollary 5.3c]. The first m rows of Q are denoted by Q′.
It is easy to see that range

Z
(Q′) = Λ which implies that Q′ has full row rank. Denote by X the

HNF of Q′ (which can be obtained as in Schrijver [9, Theorem 5.3]). We immediately see that X
fulfills (10a), (10b), and (10e). �

The matrix X described in Theorem 3.8 will be called the Hermite Normal Form associated
with n, (a1, . . . , am). The lattice Λ described in (10e) will be called the lattice associated with
n, (a1, . . . , am).

Proposition 3.9. Let G = Cn(a1, . . . , am) be a properly given connected circulant and X and Λ
the HNF and the lattice associated with n, (a1, . . . , am).

Let V ′ := Zm/Λ and

E′ :=
⋃

u+Λ∈Zm/Λ

m
⋃

i=1

{[u + Λ, u + ei + Λ]},

where ei denotes the i-th unit vector, ei := (0, . . . , 0, 1, 0, . . . , 0)t.
Then the graphs G and G′ := (V ′, E′) are isomorphic.

Note that (10d) and (10e) imply that a complete system of representatives for Zm/Λ is given
by V ′′ := {(s1, . . . , sm) ∈ Zm : 0 ≤ si < xii}.

Proof. Define ϕ : Zm → Z/nZ by (s1, . . . , sm) 7→ s1a1 + · · ·+ smam + nZ. Clearly, this is a group
homomorphism. As gcd(a1, . . . , am, n) = 1, it is surjective. By (10e) its kernel is Λ, therefore it
induces a group isomorphism ϕ̄ from V ′ to V .

We note that E′ is well defined and that [u+Λ, v+Λ] ∈ E ′ if and only if v−u ≡ ±ei (mod Λ) for
some 1 ≤ i ≤ n. This is equivalent to ϕ̄(v+Λ)−ϕ̄(u+Λ) = ±ai+nZ, i. e., [ϕ̄(u+Λ), ϕ̄(v+Λ)] ∈ E
which proves that ϕ̄ is a graph isomorphism. �
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In the case m = 2 the consequences of Proposition 3.9 are as follows:

Corollary 3.10. Let Cn(a, b) be a properly given connected circulant and X the HNF associated
with n, (a, b). Then x11 = gcd(b, n) and x22 = n/ gcd(b, n) > 1.

Cn(a, b) can be 3-colored if and only if there are w0, . . . , wx11
∈ {B, G, R}x22 such that for all

0 ≤ i ≤ x11 and 0 ≤ j < x22 the following equations hold:

wx11
= w0 rotx21,(11a)

wij 6= wi,(j+1) mod x22
,(11b)

wij 6= w(i+1),j ,(11c)

where the components of the wi are counted from 0, i. e., wi = (wi0, . . . , wi,x22−1).

Proof. The formulæ for x11 and x22 follow from (10c), gcd(a, b, n) = 1, and n - b.
Let V ′′ = {0, . . . , x11 − 1} × {0, . . . , x22 − 1}. By Proposition 3.9, Cn(a, b) can be 3-colored

if and only if there is a mapping w : V ′′ → {R, G, B} such that w(i, j) 6= w(k, l) whenever
(k, l) ≡ (i + 1, j) (mod Λ) or (k, l) ≡ (i, j + 1) (mod Λ).

By (10d) and the definition of V ′′, (k, l) ≡ (i, j +1) (mod Λ) is equivalent to i = k and l ≡ j +1
(mod x22), which corresponds to (11b).

Similarly, (k, l) ≡ (i + 1, j) (mod Λ) is equivalent to (k = i + 1 and l = j) or to (k = 0 and
i = x11 − 1). The first case corresponds to (11c). In the second case, we have (0, l) ≡ (x11, j)
(mod Λ) or equivalently (0, l + x21 − j) (mod Λ), which is equivalent to l + x21 ≡ j (mod x22). It
can easily be checked that this is handled by the extension of the coloring to wx11

as in (11a) and
the application of (11c). �
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Figure 3.1. Example 3.11

Example 3.11. C35(6, 10). We get x11 = gcd(10, 35) = 5, x22 = n/x11 = 7. We have to choose x21

such that 5 · 6 + x21 · 10 ≡ 0 (mod 35) and see that x21 = 4 is a solution to this congruence. By
(10a), (10b), and (10c), this is indeed the associated HNF.

We draw the graph putting vertex ia + jb in position (i, j) (cf. Figure 3.1(a)). In the sixth
column from the left, the first column is repeated (rotated by x21); so the dotted lines do not have
to be followed anymore.
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A coloring is given in Figure 3.1(b), namely:

w0 = w2 = (BG)3R,

w1 = w3 = (GR)3B,

w4 = RG(RB)2G,

w5 = w0 rot 4 = GBGRBGB.

To conclude, we mention the following result which relates different associated HNFs to the
same circulant (note that the HNF is only unique when n, (a, b) are fixed).

Lemma 3.12. Let Cn(a, b) be a properly given connected circulant and X the HNF associated to
n, (a, b). Then the HNF associated to n, (a, n − b) is

X ′ =

(

x11 0
−x21 mod x22 x22

)

.

Proof. X ′ satisfies (10a), (10b), (10c). �

3.3. 3-Colorability of General Cn(a, b). In this subsection, we complete the proof of Theo-
rem 3.2. Let Cn(a, b) be a properly given connected circulant. We may assume without loss of
generality that gcd(a, n) ≤ gcd(b, n).

Proposition 3.13. Let gcd(a, n) = gcd(b, n) = 1. Then Cn(a, b) is 3-colorable except when

6 - n and (b ≡ ±2a (mod n) or a ≡ ±2b (mod n))

or

n = 13 and (b ≡ ±5a (mod 13) or a ≡ ±5b (mod 13)).

Proof. Since Cn(a, b) is isomorphic to Cn(1, a−1b mod n) by Lemma 3.4, this proposition is a
consequence of the results of Subsection 3.1. �

Lemma 3.14. Let x11 = 2 and x21 = 1. Then Cn(a, b) is 3-colorable if and only if 3 | x22.

Proof. Let w0, w1, w2 = w0 rot 1 be a coloring according to Corollary 3.10. Instead of the colors
B, G, R we will just write 0, 1, 2. Without loss of generality we have w00 = 0 and w10 = 1. We
claim that wk,l = k + l mod 3 for k = 0, 1, 2 and 0 ≤ l ≤ x22 − 1. Assume that this is true
for some (0, l) and (1, l) with 0 ≤ l < x22 − 1. Since w1,l+1 6= w2,l+1 = w0,l = l mod 3 and
w1,l+1 6= w1,l = l + 1 mod 3, we get w1,l+1 = l + 2 mod 3. This implies that w0,l+1 = l + 1 mod 3,
and the claim is proven for (0, l + 1), (1, l + 1). From that, it follows for k = 2 also.

As w0,x22−1 6= w0,0 = 0 and w0,x22−1 = w2,0 6= w0,1 = 1 we get x22 − 1 mod 3 = 2, i. e., 3 | x22.
Conversely, if 3 | x22, the above coloring is indeed valid. �

Lemma 3.15. Let x11 = 2 and 2 - x21 ≥ 3. Then Cn(a, b) is not 3-colorable if and only if
x21 = x22 − 1 and 3 - x22.

Proof. Let r := bx22/x21c and u ≥ 1 such that x21 = 2u + 1.
If x22 − rx21 is even, say 2s for some 0 ≤ s ≤ u, then

w0 = ((BG)uR)r(BR)s,

w1 = ((GR)uB)r(GB)s

gives a valid 3-coloring.
Therefore, we may assume x22 = rx21 + 2s + 1 for some 0 ≤ s < u. If r ≥ 2, the result can be

found in Table 3.6.
Finally, we have to deal with the case x22 = x21 +2s+1 with 0 ≤ s < u. Let x′

21 := x22−x21 =
2s + 1 = −x21 mod x22. Then we may switch to Cn(a, n − b) according to Lemma 3.12 with the

new HNF
(

2 0
x′

21
x22

)

.

Obviously, 2 - x′

21. If s ≥ 1, then the new HNF corresponds to those cases of Lemma 3.15 which
have already been proven to be 3-colorable, since x′

21 < x22/2.
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1 ≤ s < u w0 = ((BG)uR)r−1(BG)sR(GR)u−s(BG)sR,
w1 = ((RB)uG)r−1(RB)sG(BG)u−s(RB)sG,

s = 0 w0 = ((BG)uR)r−1(BR)uBG,
w1 = ((GR)uB)r−1(GB)uGR.

Table 3.6. Lemma 3.15, x22 = rx21 + 2s + 1, r ≥ 2

If s = 0, the new HNF corresponds to Lemma 3.14 which gives the exceptional cases in the
statement of Lemma 3.15. �

Lemma 3.16. Let x11 = 2 and 2 | x21. Then Cn(a, b) is not 3-colorable if and only if x21 = x22−1
and 3 - x22.

Proof. If 2 | x22, a valid coloring is given by w0 = (BG)x22/2, w1 = (GB)x22/2, so we may assume
2 - x22. If x21 = 0, a valid 3-coloring is given by w0 := (BG)sR and w1 := (RB)sG, where
x22 = 2s + 1.

Finally, if x21 > 0, we have x′

21 := x22 − x21 = −x21 mod x22 and observe that 2 - x′

21. Using
Lemma 3.12 we can deduce Lemma 3.16 from Lemma 3.14 and Lemma 3.15. �

We sum up the results for x11 = 2 in the following proposition:

Proposition 3.17. Let x11 = 2. Then Cn(a, b) is not 3-colorable if and only if 3 - x22 and
(x21 = 1 or x21 = x22 − 1).

Proof. This is a consequence of Lemma 3.14, Lemma 3.15, and Lemma 3.16. �

Lemma 3.18. Let x11 ≥ 3 and 2 | x22. Then Cn(a, b) is 3-colorable.

Proof. Write x22 = 2r. If 2 | x11 + x21, then w2u := (BG)r and w2u+1 := (GB)r for u ≥ 0 is a
valid coloring.

Otherwise w0 := (BG)r , w1 := (RB)r , w2u := (GR)r, w2u+1 := (RG)r for u ≥ 1 is a valid
coloring. �

Lemma 3.19. Let 2 - x11 ≥ 3 and 2 - x22. Then Cn(a, b) is 3-colorable.

Proof. If x21 is even, we write x21 := 2u, x22 := 2r + 1, and x11 := 2s + 1. Valid colorings are
given in Table 3.7.

u ≥ 1 w2t = (BG)rR for 0 ≤ t < s,

w2t+1 = (GR)rB for 0 ≤ t < s,

w2s = (RG)u−1(RB)r−u+1G,

u = 0 w2t = (BG)rR for 0 ≤ t < s,

w2t+1 = (GR)rB for 0 ≤ t < s,

w2s = (RB)rG.

Table 3.7. Lemma 3.19, 2 | x21.

If 2 - x21, then we can use Lemma 3.12 to prove the result. �

Lemma 3.20. Let 2 | x11 ≥ 4 and 2 - x22. Then Cn(a, b) is 3-colorable.
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Proof. By Lemma 3.12 we may assume x21 ≤ x22/2. If 3 | x22 or x21 > 1 we consider X ′′ :=
(

2 0
x21 x22

)

. By Proposition 3.17 there are w′′

0 and w′′

1 such that the circulant defined by X ′′ can be
3-colored. Defining w2u := w′′

0 and w2u+1 := w′′

1 for 0 ≤ u < x11/2 we obtain a valid coloring for
Cn(a, b).

We have to consider the remaining case 3 - x22 and x21 = 1. We write x22 := 2s + 1. A valid
coloring is given by

w2t := (BG)sR, 0 ≤ t < x11/2 − 1,

w2t+1 := (GR)sB, 0 ≤ t < x11/2 − 1,

wx11−2 := (RB)sG,

wx11−1 := (BG)sR.

�

We can summarize the case x11 ≥ 3 as follows:

Proposition 3.21. Let x11 ≥ 3. Then Cn(a, b) is 3-colorable.

From Propositions 3.13, 3.17, and 3.21 we can easily derive Theorem 3.2.

4. Planarity

In this section, we will prove the following theorem, which characterizes all planar circulant
graphs.

Theorem 4.1. Let G = Cn(a1, . . . , am) be a connected properly given circulant. G is planar if
and only if one of the following conditions holds:

(12a) m = 1.
(12b) m = 2, ai ≡ ±2aj (mod n), and 2 | n, where (i, j) = (1, 2) or (i, j) = (2, 1).
(12c) m = 2, ai = n/2, and 2 | aj , where (i, j) = (1, 2) or (i, j) = (2, 1).

We note that in the case m = 1, G is clearly planar. We will now discuss the case m = 2 in
several subcases, and finally we will turn to the case m ≥ 3.

4.1. Planarity of Circulant Graphs with m = 2. Let G = Cn(a, b) be a properly given
connected circulant. Without loss of generality, we assume gcd(b, n) ≤ gcd(a, n). We consider
the associated HNF X . By applying Lemma 3.12 if necessary we may also assume x21 ≤ x22/2.
Since x11a + x21b ≡ 0 (mod n) we get gcd(a, n) | x21 which implies x21 = 0 or x11 = gcd(b, n) ≤
gcd(a, n) ≤ x21.

Lemma 4.2. Let x11 = 1 and x21 = 2. Then Cn(a, b) is planar if and only if 2 | x22.

Proof. We note that the assumptions imply a + 2b ≡ 0 (mod n).
Assume first that 2 - x22 and write x22 = 2r + 1. The case r = 0 cannot happen since it would

imply n | b. If r = 1 then n | 3b which yields a ≡ ±b ≡ ±n/3 (mod n) and G was not properly
given. If r = 2 then n = 5 and it is easily seen that G = K5 and therefore G is non-planar.

We assume x22 = 2r + 1 where r ≥ 3. We consider the subgraph G′ = (V, E′) of G described
in Table 4.1, which is to be read as follows: [u, v] ∈ E ′ if and only if u ↔ v is listed somewhere in
Table 4.1. All congruences in Table 4.1 are meant to be modulo n.

We remark that vertices −(r− 3)b,−(r− 4)b, . . . ,−b, 0, b, . . . , (r− 4)b, (r− 3)b have degree 2 in
G′, therefore after removing them we end up with K3,3, which proves non-planarity in this case.

Finally, we have to deal with x22 = 2r for some r. Figure 4.1 gives a planar embedding for this
case.

�

Lemma 4.3. Let x11 = 1, x21 ≥ 3. Then Cn(a, b) is non-planar.

Proof. By assumption we have a ≡ −x21b (mod n). Since 3 ≤ x21 ≤ x22/2 we get x22 ≥ 6 which
implies that {0, b, 2b, x21b, (x21 + 1)b, (x21 + 2)b} are pairwise incongruent modulo n. We consider
the subgraph G′ described in Table 4.2. Vertices 3b, . . . , (x21−1)b and (x21+2)b, . . . , (x22−1)b have
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rb ↔ (r + 1)b ≡ −rb,
rb ↔ rb − a ≡ (r + 2)b ≡ −(r − 1)b,
rb ↔ rb + a ≡ (r − 2)b,
(r − 1)b ↔ (r − 1)b − a ≡ −rb,
(r − 1)b ↔ (r − 1)b + a ≡ (r − 3)b ↔ (r − 5)b ↔ . . . ↔ (r − 1 − 2(r − 1))b ≡ −(r − 1)b,
(r − 1)b ↔ (r − 2)b,
−(r − 2)b ↔ −(r − 2)b + a ≡ −rb,
−(r − 2)b ↔ −(r − 1)b,
−(r − 2)b ≡ (r − 2 − 2(r − 2))b ↔ (r − 2 − 2(r − 3))b ↔ . . . ↔ (r − 4)b ↔ (r − 2)b.

Table 4.1. Lemma 4.2, x22 = 2r + 1, r ≥ 3

. . . (2r − 1)bb 5b3b

. . . (2r − 2)b4b2b0

Figure 4.1. Lemma 4.2, x22 = 2r

b ↔ 0,
b ↔ 2b,
b ↔ b − a ≡ (x21 + 1)b,
x21b ≡ −a ↔ 0,
x21b ↔ (x21 − 1)b ↔ . . . ↔ 3b ↔ 2b,
x21b ↔ (x21 + 1)b,
(x21 + 2)b ↔ (x21 + 3)b ↔ . . . ↔ (x22 − 1)b ↔ 0,
(x21 + 2)b ↔ (x21 + 2)b + a ≡ 2b,
(x21 + 2)b ↔ (x21 + 1)b.

Table 4.2. Lemma 4.3

degree 2 and can be removed, and we end up with an instance of K3,3. This proves non-planarity
in this case. �

Lemma 4.4. Let x21 = 0. Then Cn(a, b) is planar if and only if x11 = 2.

Proof. We note that the assumption x21 = 0 implies x11a ≡ 0 (mod n) which yields x11 ≥ 2.

. . .2bb0

. . .a a + 2ba + b

(n/2 − 1)b

a + (n/2 − 1)b

Figure 4.2. Lemma 4.4, x11 = 2

If x11 = 2 we get a = n/2, x22 = n/x11 = n/2, and a planar embedding is given in Figure 4.2.
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a ↔ 0 ↔ b,
a ↔ a + b,
a ↔ a + (x22 − 1)b ↔ a + (x22 − 2)b ↔ . . . ↔ a + 3b ↔ a + 2b,
a ↔ 2a ↔ 2a + b,
b ↔ a + b,
b ↔ 2b ↔ a + 2b,
b ↔ (x11 − 1)a + b ↔ (x11 − 2)a + b ↔ . . . ↔ 3a + b ↔ 2a + b,
a + b ↔ a + 2b,
a + b ↔ 2a + b,
a + 2b ↔ 2a + 2b ↔ 2a + b.

Table 4.3. Lemma 4.4, x11 ≥ 3

Let x11 ≥ 3. Consider the subgraph G′ constructed in Table 4.3. We remark that the vertices
0, 2a, 2b, 2a + 2b as well as a + 3b, . . . , a + (x22 − 1)b and 3a + b, . . . , (x11 − 1)a + b have degree 2
in G′ and can be removed, yielding an instance of K5. �

Lemma 4.5. Let x11 ≥ 2 and x21 6= 0. Then Cn(a, b) is non-planar.

Proof. The assumptions and the uniqueness of the associated HNF imply that x11a ≡ −x21b 6≡ 0
(mod n) and 2 ≤ x11 ≤ x21 ≤ x22/2. We construct a subgraph G′ in Table 4.4. The vertices

0 ↔ a,
0 ↔ b,
0 ↔ −a ≡ (x11 − 1)a + x21b ↔ (x11 − 2)a + x21b ↔ . . . ↔ 2a + x21b ↔ a + x21b,
a + (x22 − 1)b ↔ a,
a + (x22 − 1)b ↔ (x22 − 1)b ↔ (x22 − 2)b ↔ . . . ↔ 2b ↔ b,
a + (x22 − 1)b ↔ a + (x22 − 2)b ↔ a + (x22 − 3)b ↔ . . . ↔ a + (x21 + 1)b ↔ a + x21b,
a + b ↔ a,
a + b ↔ b,
a + b ↔ a + 2b ↔ a + 3b ↔ . . . ↔ a + (x21 − 1)b ↔ a + x21b.

Table 4.4. Lemma 4.5

2a + x21b, . . . , (x11 − 1)a + x21b; 2b, . . . , (x22 − 1)b; a + (x21 + 1)b, . . . , a + (x22 − 2)b; a + 2b, a +
3b, . . . a+(x21−1)b have degree 2 in G′. After removing these vertices, we end up with an instance
of K3,3. �

Summing up Lemmata 4.2, 4.3, 4.4, and 4.5 and translating the conditions on the HNF into
conditions on a and b taking into account that gcd(a, b, n) = 1, we get the results for m = 2 which
have been claimed in Theorem 4.1.

Since the proof of the cases m ≥ 3 necessitates a characterization for the planarity of not
necessarily connected graphs, we restate the result:

Proposition 4.6. Let Cn(a, b) be a properly given circulant which may be disconnected. It is
planar if and only if one of the following two conditions holds:

(13a) ai ≡ ±2aj (mod n) and v2(aj) < v2(n), where (i, j) = (1, 2) or (i, j) = (2, 1).
(13b) ai = n/2, 1 ≤ v2(n) ≤ v2(aj), where (i, j) = (1, 2) or (i, j) = (2, 1).

4.2. Circulant Graphs with m ≥ 3 are Non-Planar.

Lemma 4.7. Let Cn(a, b, c) be a properly given connected circulant. Then it is non-planar.
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Proof. Let us first assume that none of a, b, and c equals n/2. If Cn(a, b, c) is planar, then Cn(a, b)
is planar, and this would imply by Proposition 4.6 that a ≡ 2b (mod n) (interchanging a and b or
replacing a by n − a if necessary) and v2(b) < v2(n). Similarly we get b ≡ ±2c or c ≡ ±2b. The
latter can be excluded since the circulant was properly given. Therefore (replacing c by n − c if
necessary) b ≡ 2c (mod n) and v2(c) < v2(n). This implies that Cn(a, b, c) = Cn(4c, 2c, c) with
v2(2c) < v2(n), i. e., v2(c) ≤ v2(n) − 2. It follows that Cn(4c, c) is planar and we conclude from
Proposition 4.6 that n | uc for u ∈ {2, 6, 7, 9}. This yields v2(n) ≤ 1 + v2(c) ≤ 1 + (v2(n) − 2),
which is a contradiction.

We assume now that one of a, b, and c equals n/2, without loss of generality c = n/2. Since
Cn(a, n/2) is planar, either 1 ≤ v2(n) ≤ v2(a) by (13b) or a ≡ ±n/4 (mod n) by (13a). The same
holds for b. As Cn(a, b) is planar, either v2(b) < v2(n) or v2(a) < v2(n) by (13a), therefore we
may assume without loss of generality that Cn(a, b, c) = Cn(a, n/4, n/2) with 1 ≤ v2(n) ≤ v2(a).
By (13a) we get a ≡ ±2(n/4) (mod n) and have a = n/2, which is a contradiction. �

It is clear that Lemma 4.7 completes the proof of Theorem 4.1 since for m ≥ 4, Cn(a1, a2, a3)
is a non-planar subgraph of Cn(a1, a2, . . . , am).
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