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1 Introduction

In several well-known cryptosystems the essential operation is the computation
of multiples and linear combinations in an Abelian group law. We discuss the
second operation in a context, where subtraction and addition are equally
costly. The most prominent example for this situation is the group law on an
elliptic curve.

The standard method to compute a multiple nP is the binary method, see [1,2].
It uses the operations double and add P . If one writes n in binary notation, the
ones correspond to these addition operations. In our context the subtraction

of P is not more costly than the addition of P . This leads to the concept
of redundant expansions (cf. [3]). Now, the possible digits are {0,±1}, and
−1 corresponds to a subtraction of P , see, e.g., [4]. The representation is no
longer unique, and the goal is to find a representation with as many zeros as
possible, in order to have low complexity. This “Canonical Sparse Form” was
independently discovered by many authors, and we refer to [5] for a historic
account. It is sometimes called nonadjacent form (NAF), since it may be
characterized by the fact that from two adjacent digits at least one must be
a zero. Only about 1

3
of the digits are non-zero in contrast to 1

2
in ordinary

binary expansion. The number of non-zero digits in the NAF of n is called the
Hamming weight of n.

In [6] Solinas discusses the problem of computing mP + nQ. Instead of com-
puting mP and nQ separately, one can proceed as follows. An approach using
unsigned digit expansions would use the doubling operations and occasional
additions of P , Q, or P + Q. Now, in instances where subtractions are no
obstacles, one can allow additions of P , Q, −P , −Q, P +Q, P −Q, −P +Q,
and −P −Q.

In order to describe this by digit expansions, we fix a few notations. Given
two integers m and n, a joint expansion of m

n
is a matrix

(

x`

y`
· · · x0

y0

)

satisfying

xj, yj ∈ {0,±1} and

m =
∑̀

j=0

xj2
j, n =

∑̀

j=0

yj2
j.

Its (joint) Hamming weight is the number of nonzero columns

#
{

j
∣

∣

∣

xj

yj
6= 0

0

}

.

If one has a joint expansion of m and n, then a 1
1

corresponds to an addition

of P + Q, a −1
0

to an addition of −P , etc. To keep the complexity low, the

goal is to create as many double zeros 0
0

in the joint expansion as possible.
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Solinas found a canonical joint expansion, called Joint Sparse Form, which has
about 1

2
of the double digits being a double zero 0

0
. This Joint Sparse Form has

minimal joint Hamming weight among all joint expansions of two numbers m

n
.

In this paper, we want to gain a better understanding of the Joint Sparse Form.
We start by considering another joint representation that we call Simple Joint
Sparse Form. It has always the same Hamming weight as the Joint Sparse
Form (even more: the double zeros are in the same positions). As the name
suggests, this form is simpler, and created in a less elaborate way than the
Joint Sparse Form. In Section 2 we give an algorithm for its computation and
characterize it in a syntactic way. Since the joint Hamming weight is the same,
we use the Simple Joint Sparse Form exclusively throughout this paper.

In Section 3, we are interested in geometric and topological properties of the
Simple Joint Sparse Form. We construct a transducer with 9 (essential) states
that produces the Simple Joint Sparse Form from the binary expansions of
two numbers x and y. Now each of these 9 states corresponds to a certain
area in the unit square, and we thus find a decomposition of the unit square
into 9 regions of fractal type. It can be seen in Figure 2 as any of the four
subsquares (ignore the different hatchings for the moment). It is proved that
these regions are connected; their respective areas are computed, as well as
the Hausdorff dimension of the boundaries (= 1.21 . . . ). Pairs of numbers on
the boundaries have usually two different representations, but eight numbers
have even three! The coordinates of these eight points are computed.

The regions correspond to digits, and a fortiori to the Hamming weight of a
pair of numbers m, n. Five regions contribute one to the Hamming weight
h(m,n), while the remaining four (of total area 1

2
) contribute zero to it. In

Section 4 we prove that
∑

m,n<N h(m,n) ∼ N2

2
log2 N . Intuitively, that is not

surprising, since there are about N 2 log2N possible positions, and about half
of them are non-zero. The obtained formula is more precise, as it exhibits
a periodic oscillation of order N 2, and an error term that depends on the
Hausdorff dimension mentioned before. Such a periodicity phenomenon is not
uncommon in digit counting problems. Our approach follows the elegant and
elementary method of Delange [7].

Section 5 exhibits a central limit theorem for the Hamming weight h(m,n).
It uses the analytic machinery developed in [8]. With these methods, asymp-
totic expansions for expectation and variance can also be achieved, but the
oscillating term mentioned before would be less explicit in this way.

The last Section 6 briefly discusses higher dimensions. Solinas [6] remarks
that a generalization would require a higher-order analogue of the Joint Sparse
Form. The lack of such an analogue is also regretted by Avanzi [9]. While it
might be less obvious to obtain such a higher dimensional Joint Sparse Form,
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based on the description given by Solinas, it is completely natural when start-
ing from the ideas of the Simple Joint Sparse Form, introduced and studied
in the present paper. And, indeed, we get an algorithm for it, show that it has
minimal Hamming weight, and characterize it syntactically. The NAF has at
least a zero in two consecutive digits, and the (Simple) Joint Sparse Form at
least a double zero in three consecutive double digits. Now the d-dimensional
Simple Joint Sparse Form guarantees a multiple zero among any consecutive
d+ 1 multiple digits.

2 Sparse Forms

2.1 Joint Sparse Form

Solinas [6] calls a joint expansion
(

x`

y`
· · · x0

y0

)

of integers x

y
their Joint Sparse

Form, if

Of any three consecutive positions, at least one is a double zero, (2.1)

Adjacent terms do not have opposite signs, i.e., xjxj+1 6= −1 and yjyj+1 6= −1,
(2.2)

If xjxj+1 6= 0, then yj+1 = ±1 and yj = 0, (2.3)

If yjyj+1 6= 0, then xj+1 = ±1 and xj = 0. (2.4)

He proves the following result:

Theorem 1 (Solinas) Every pair of integers x

y
has a unique Joint Sparse

Form. This Joint Sparse Form minimizes the joint Hamming weight amongst
all joint expansions of x

y
.

Solinas also gives an algorithm to compute the Joint Sparse Form for given
integers or for given binary expansions as input. His algorithm also accepts
reduced signed binary expansions, where reduced means that (2.2) is satisfied.
We note that Solinas’ Algorithm has to know x and y modulo 8 to calculate
the least significant pair of digits of the Joint Sparse Form, which means a
look-ahead of two positions. The algorithm can be described by a transducer
which translates a reduced signed binary expansion into the Joint Sparse Form
from right to left.
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2.2 Simple Joint Sparse Form

We describe a simple procedure to obtain a joint expansion of low weight; it
will turn out that this form has the same (i.e., minimal) Hamming weight as
the Joint Sparse Form.

The key observation is that an odd integer can be represented as x = (x` . . . x1x0),
i.e., x =

∑

j xj2
j with digits xj ∈ {0,±1}, where the parity of x1 can be pre-

scribed by replacing x0 by −x0 if necessary.

We are given two integers x and y. If both are even, then we have no choice
and have to output 0

0
. If both numbers are odd, we choose x0

y0
appropriately

so that both, (x− x0)/2 and (y − y0)/2 are even, so that a 0
0

will be written
the next step. If, say, x is odd and y is even, then we choose x0 in such a way
that (x − x0)/2 ≡ (y − 0)/2 (mod 2). This either leads to 0

0
immediately in

the next step or in the following step. This procedure generates a pair 0
0

after
at most 3 steps. It is summarized in Algorithm 1.

Algorithm 1 Simple Joint Sparse Form

Input: x and y integers
Output:

(

x`

y`
· · · x0

y0

)

Simple Joint Sparse Form
j ← 0
while x 6= 0 or y 6= 0 do
xj ← x mod 2, yj ← y mod 2

if
(

xj

yj

)

=
(

1
1

)

then

if (x− xj)/2 ≡ 1 (mod 2) then
xj ← −xj

end if
if (y − yj)/2 ≡ 1 (mod 2) then
yj ← −yj

end if
else if xj 6= yj then

if (x− xj)/2 6≡ (y − yj)/2 (mod 2) then
xj ← −xj , yj ← −yj

end if
end if
x← (x− xj)/2, y ← (y − yj)/2
j ← j + 1

end while

It is clear that Algorithm 1 yields a joint expansion
(

x`

y`
· · · x0

y0

)

which satisfies
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the following syntactical rules:

If |xj| 6= |yj| , then |xj+1| = |yj+1| , (2.5)

If |xj| = |yj| = 1, then xj+1 = yj+1 = 0. (2.6)

We call any joint expansion of x and y with digits {0,±1}, which satisfies
these two rules a Simple Joint Sparse Form of x and y. Surprisingly, it turns
out that these rules are strong enough to determine a unique joint expansion.

Theorem 2 Let x and y be integers. Then there is a unique (up to leading
0
0
) joint expansion

(

x`

y`
· · · x0

y0

)

of x

y
with digits 0, ±1 which satisfies the rules

(2.5) and (2.6).

Furthermore, the Simple Joint Sparse Form has the same joint Hamming
weight as the Joint Sparse Form. Therefore, its joint Hamming weight is min-
imal amongst all joint expansions.

PROOF. The existence is proved by Algorithm 1.

Assume that
(

x`

y`
· · · x0

y0

)

and
(

x′

`

y′

`

· · · x′

0
y′

0

)

are joint expansions subject to (2.5)

and (2.6) of the same pair of integers x

y
. Without loss of generality, min{|x| , |y|}

is minimal among all pairs of integers with at least two expansions. This as-
sumption ensures that

(

x0

y0

)

6=
(

x′

0
y′

0

)

. Without loss of generality, x0 = −x′0 6= 0.

This implies x1 6≡ x′1 (mod 2). If 2 | y, then y0 = y′0 = 0, and (2.5) implies
x1 ≡ y1 ≡ y′1 ≡ x′1 (mod 2), a contradiction. Therefore, 2 - y. Then (2.6) yields
(

x1

y1

)

=
(

0
0

)

and
(

x′

1
y′

1

)

=
(

0
0

)

. This is a contradiction to x1 6≡ x′1 (mod 2).

We already observed that (2.5) and (2.6) imply (2.1). It is clear that (2.3)
and (2.4) are fulfilled also. However in general, (2.2) is not satisfied by a
Simple Joint Sparse Form. Nevertheless, if xj+1xj = −1, our rules (2.5) and
(2.6) imply that |yj+1| = 1 and yj = 0. Therefore, replacing xj+1xj by 0xj+1

does not change the joint Hamming weight. A finite number of these simple
operations transforms a Simple Joint Sparse Form into the Joint Sparse Form
without changing the position (and therefore their number) of 0

0
. Minimality

follows from the minimality of the Joint Sparse Form. 2

We emphasize that the computation needs information modulo 4 only. It is
therefore no more a surprise that it can be realized by a transducer with look-
ahead of one only. This motivates the epitheton simple. We now construct
this transducer which reads the binary expansion of x

y
from right to left and

outputs their Simple Joint Sparse Form. Although in principle, we could admit
arbitrary signed expansions as input, we refrain from doing so since this would
lead to an automaton with 26 states. At any stage, the following information
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has to be available: the previously read pair of digits and the current pair
of digits and information about a possible carry, since a 1 may have been
replaced by −1. Since the carry is added to the previously read pair anyway,
we represent states by the sum of the previously read pair and the pair of
carries. This yields 9 states representing {0, 1, 2}×{0, 1, 2}. From some initial
state, there is an edge into the appropriate state which reads the first pair
of digits but does not output anything. It is understood that we read some
leading pairs of zeros until no further carries are left, i.e., we reach state 0

0
.

We attach integer labels to states in a more or less arbitrary fashion since
we will consider adjacency matrices. The correspondence between these labels
and the pairs of carries plus digits is as follows:

label 1 2 3 4 5 6 7 8 9

state 0
0

1
1

2
2

1
0

2
0

2
1

0
1

0
2

1
2

The resulting transducer is shown in Figure 1.

3 The Geometry of the Simple Joint Sparse Form

The aim of this section is to understand the Simple Joint Sparse Form from
left to right. We are interested to “know” in which state we are after k steps.
Figure 2 shows the situation for k = 11 and all pairs of integers 0 ≤ x, y ≤
212 − 1.

Figure 2 suggests that there is an underlying fractal structure. This structure
will be studied in this section. We will prove

Theorem 3 There exist 9 disjoint open connected subsets of [0, 1]2, A1, . . . , A9,
such that the pair of digits (xk, yk) of the simple Joint Sparse Form of the pair
of integers (x, y) can be computed from the index i for which ({x2−k−1}, {y2−k−1}) ∈
Ai and the pair of digits (ξk+1, ηk+1) in the (classical) binary expansion of
(x, y). The union of the sets Ai has Lebesgue measure 1, and their boundaries
have Hausdorff-dimension 1.2107605332 . . .. Furthermore, the index i decides
on the Hamming weight of the output, and the measure of the union of those
Ai which yield positive Hamming weight equals 1

2
.

It is clear that the k-th state when reading x

y
in their classical binary expan-

sions

x =
J
∑

j=0

ξj2
j, y =

J
∑

j=0

ηj2
j

depends on the k least significant digits, i.e., x

y
mod 2k only. The output digits
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0

1

7

4

2

8

5

39

6

0

0

∣

∣ ε

0

1

∣

∣

ε

1

0

∣

∣ε

1
1

∣

∣
ε

0
0

∣

∣

0
0

01

∣∣
00

1

0

∣

∣
0

0

1
1

∣

∣

0
000

∣∣
01

1

0

∣

∣
0

1̄
,
1

1

∣

∣
0

1

01

∣∣
01̄

0

0

∣

∣
1

0

01

∣∣
1̄0
,
11

∣∣
10

1

0

∣

∣
1̄

0

0
0

∣

∣

1
1

0
1

∣

∣

1
1̄

1
0

∣

∣

1̄
1

1
1

∣

∣

1̄
1̄00

∣∣
00

1
0

∣

∣

0
0

0
1

∣

∣

0
0

1

1

∣

∣
0

0

0

0

∣

∣
0

0

0
1

∣

∣

0
0

1
0

∣

∣

0
0

11

∣∣
00

0
0

∣

∣

0
0

1
1

∣

∣

0
0

0

1

∣

∣
0

0

10

∣∣
00

00

∣∣
1̄0
,
10

∣∣
10

0

1

∣

∣
1

0

1

1

∣

∣
1̄

0

0

0

∣

∣
0

1̄
,
0

1

∣

∣
0

1

10

∣∣
01

11

∣∣
01̄

Fig. 1. Automaton for calculating the Simple Joint Sparse Form from the binary
expansion from right to left. The symbol ε denotes the empty word.

(xk−1, yk−1) in the Simple Joint Sparse Form

x =
J+2
∑

j=0

xj2
j, y =

J+2
∑

j=0

yj2
j

depend on the k + 1 least significant digits, or equivalently, on the k-th state
and on (ξk, ηk). Since the state is the interesting information to be found, we
renormalize pairs of integers less than 2k by dividing through 2k, which yields
points in the unit square. The above mentioned fractal would then result from
letting k tend to infinity. In order to prove convergence we define functions Φk

on pairs of words of digits {0, 1} of length k as follows

Φk

(

δ1
ε1

δ2
ε2

· · · δk
εk

)

=

(

δ1
ε1

δ2
ε2

· · · δk
εk

)

· {1, . . . , 9},

8



1 1

4 4

5 5

7 72 26 6

8 8

9 9

3 3

1 1

4 4

5 5

7 72 26 6

8 8

9 9

3 3

x10 0 0 0 1 −1 1 1 −1 −1

y10 0 1 −1 0 0 1 −1 1 −1

color

Fig. 2. 11th state and output digits x10

y10
when reading all pairs x

y
of integers up to

212− 1. (The output digit x10

y10
of x

y
is given by the “color” of the “pixel” in position

(x, y).)

where the expression on the right means application of the pair of words to all
states of the automaton in Figure 1. Thus the image of Φk is a set of states.
Furthermore,

Φk+1

(

δ1
ε1

δ2
ε2
· · · δk+1

εk+1

)

⊆ Φk

(

δ1
ε1

δ2
ε2
· · · δk

εk

)

,

which implies existence of the limit

Φ

(

δ1
ε1

δ2
ε2
· · ·

)

= lim
k→∞

Φk

(

δ1
ε1

δ2
ε2
· · · δk

εk

)

. (3.1)

The function Φ defined on ({0, 1} × {0, 1})
�

is continuous in all points which
have a singleton image.

Remark 4 In the above description the sequence Φk is calculated by the au-
tomaton in Figure 1 by reading digits from right to left. Certainly, it would be
more desirable to have a description of Φk in terms of the digits in “natural”
order, i.e., from left to right. This is indeed possible: We construct an automa-
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ton with set of states (a subset of) the set {1, . . . , 9}{1,...,9}. The transition from

state g by the pair of digits δ

ε
will be denoted by g �

(

δ

ε

)

in order to avoid any
confusion. It is given by

(

g �
(

δ

ε

))

(i) := g

((

δ

ε

)

· i
)

for 1 ≤ i ≤ 9. The initial state is the identity map. It turns out that 750 states
are actually reached. If we reach a constant map g(i) = j for all 1 ≤ i ≤ 9 after

reading
(

δ1
ε1
· · · δk

εk

)

, we have Φ
(

δ1
ε1
· · · δk

εk
· · ·

)

= {j}. In that way, we obtain one
single pair of digits. However, it might happen that we do not reach a singleton
after reading k digits for any finite k.

We now want to prove that Φ descends to a function on [0, 1]2 by

Φ

(

∞
∑

n=1

δn2−n,
∞
∑

n=1

εn2−n

)

= Φ

(

δ1
ε1

δ2
ε2
· · ·

)

.

For this purpose we note the simple facts that

(

δ

ε

δ

ε

)

· {1, . . . , 9} is a singleton (δ, ε ∈ {0, 1}) (3.2)

and
(

δ

0

δ

1

)k

· i =

(

δ

0

δ

1

)2

· i (δ, ε ∈ {0, 1}) (3.3)

for all k ≥ 2 and all i ∈ {1, . . . , 9}. In order to prove that

Φk+`

(

δ1
ε1
· · · δk

εk

1

εk+1

0

εk+2

0

εk+3
· · · 0

εk+`

)

= Φk+`

(

δ1
ε1
· · · δk

εk

0

εk+1

1

εk+2

1

εk+3
· · · 1

εk+`

)

for ` ≥ 9 it is sufficient by (3.2) and (3.3) to check

(

1

ε1

0

ε2
· · · 0

ε9

)

· {1, . . . , 9} =
(

0

ε1

1

ε2
· · · 1

ε9

)

· {1, . . . , 9}

for all choices of (ε1, . . . , ε9). The same proof applies if the first and second
coordinate are interchanged. Thus Φ is well-defined on [0, 1]2 and continuous
in all points which have a singleton image.

We want to describe the sets

Aj = {(x, y) ∈ [0, 1]2 | Φ(x, y) = {j}},
Vj = {(x, y) ∈ [0, 1]2 | j ∈ Φ(x, y)}

topologically. The sets Aj are open by the continuity properties of Φ. For a
point (x, y) ∈ Vj and any k the suffix after k (most significant) digits of the
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digital expansions of (x, y) can be altered to (x̃, ỹ) so that Φ(x̃, ỹ) = {j}. This
implies Aj ⊆ Vj ⊆ Aj. On the other hand for a point (x, y) /∈ Vj by a similar
argument a neighbourhood of this point is in the complement of Vj. Thus
Vj = Aj.

Any neighbourhood of a point (x, y) with {i, j} ⊆ Φ(x, y) contains points
(x′, y′) ∈ Ai and (x′′, y′′) ∈ Aj by the above arguments. This implies that
(x, y) ∈ ∂Vj and int(Vj) ⊆ Aj ⊆ Vj, which yields int(Vj) = Aj.

We now want to characterize the sets Aj and Vj in the language of graph
directed sets as introduced in [10]. For this purpose we introduce the maps

fδ,ε(x, y) =

(

x + δ

2
,
y + ε

2

)

.

It is clear from the definition that

Φ(fδ,ε(x, y)) =

(

δ

ε

)

· Φ(x, y). (3.4)

Equation (3.4) leads us to the definition

F (S1, . . . , S9) = (F1(S1, . . . , S9), . . . , F9(S1, . . . , S9)), (3.5)

where

Fi(S1, . . . , S9) =
⋃

j,δ,ε
i=(δ,ε)·j

fδ,ε(Sj),

where Sk ⊆ [0, 1]2. Since F acts as a contraction on the compact subsets of
[0, 1]2, there exist unique compact sets K1, . . . , K9, such that F (K1, . . . , K9) =
(K1, . . . , K9). These sets can be obtained as the limits of iterates of F of any
9-tuple of compact sets. From (3.4) we conclude that

Fi(A1, . . . , A9) ⊆ Ai, (3.6)

Fi(V1, . . . , V9) = Vi (3.7)

and therefore Vi = Ki for i = 1, . . . , 9.

Next we want to prove that the sets Aj are connected. We introduce the open
sets

Oj = int





⋃

Φ4( δ1
ε1

··· δ4
ε4

)={j}

(

δ1
2

+ · · ·+ δ4
16
,
ε1

2
+ · · ·+ ε4

16

)

+
[

0,
1

16

]2


.
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O1

O2

O3

O4

O5

O6O7

O8

O9

Fig. 3. Left: the sets Oi.
Right: The dark gray areas represent the left image after one application of the
functions fδ,ε.

These sets are shown in the left image of Figure 3. The sets Oj are connected
and

Oj ⊂ Vj.

The right image in Figure 3 shows that

Oi ∩ Fi(O1, . . . , O9) 6= ∅ and therefore Oi ∪ Fi(O1, . . . , O9) is connected.

From this it follows by induction that the sets

Bi =
∞
⋃

`=0

(

F `(O1, . . . , O9)
)

i

are connected. Furthermore, Bi is a dense open subset of Vi, since

(V1, . . . , V9) = lim
k→∞

F k(O1, . . . , O9).

Therefore the sets Ai = int(Vi) are connected.

In the following we want to study intersections of two or three sets Vj. Clearly,
we have for pairwise distinct i, j, k

V{i,j} := Vi ∩ Vj =
{

(x, y) ∈ [0, 1]2 | {i, j} ⊆ Φ(x, y)
}

,

V{i,j,k} := Vi ∩ Vj ∩ Vk =
{

(x, y) ∈ [0, 1]2 | {i, j, k} ⊆ Φ(x, y)
}

.
(3.8)

These sets can be generated by the automata in Figure 4 and Figure 5. These
automata have the two (resp. 3) element subsets of {1, . . . , 9} as their states
(only those which correspond to non-empty intersections are drawn) and the
obvious transition functions. In order to generate a point in V{i,j} we start in
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the state labeled with i, j and follow the arcs in the reverse direction. The triple
intersections are singleton sets, which will be called “three country borders”:

{(

1

5
,
2

5

)}

= V{1,2,7},
{(

1

5
,
3

5

)}

= V{2,7,8},
{(

2

5
,
1

5

)}

= V{1,2,4},
{(

2

5
,
4

5

)}

= V{2,8,9},
{(

3

5
,
1

5

)}

= V{2,4,5},
{(

3

5
,
4

5

)}

= V{2,3,9},
{(

4

5
,
2

5

)}

= V{2,5,6},
{(

4

5
,
3

5

)}

= V{2,3,6}.

2, 32, 5

2, 81, 2

1, 7

1, 4 8, 9

5, 6

7, 8

3, 6

4, 5 3, 9

2, 4

2, 7

2, 9

2, 6

0
0

0

1

1

0

0
1

0

0

1

1

1
0

0

0

1

1

1
1

0

1

1

0

0

1

10

10

0

1

11

0

0

1

1

00

0

0

11

1

0

01

00

1

1

01

1

0

1
1

0
1

1
1

1
0

1
0

0
0

0
1

0
0

Fig. 4. The automaton generating the points in the sets V{i,j}.

Now, we want to compute the Lebesgue measures λ(Vi) of the sets Vi and the
Hausdorff-dimension of ∂Vi. It is an immediate consequence of the definition
that

9
⋃

i=1

Vi = [0, 1]2.
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2, 7, 82, 4, 51, 2, 7

2, 3, 9

1, 2, 4

2, 3, 62, 8, 9 2, 5, 6
1111

1

0

1

0

0

1

0

1

00 00

Fig. 5. The automaton generating the “three country borders” V{i,j,k}.

Furthermore, from (3.7) we can conclude

λ(Vi) ≤
1

4

∑

j,δ,ε
(δ,ε)·j=i

λ(Vj). (3.9)

Summing these inequalities for i = 1, . . . , 9 we obtain

9
∑

i=1

λ(Vi) ≤
9
∑

i=1

λ(Vi),

which implies that equality has to hold in (3.9) for all i = 1, . . . , 9. Since

λ(Vi) =
1

4





∑

j,δ,ε
(δ,ε)·j=i

λ(Vj)−
∑

j<k,δ1,δ2,ε1,ε2

(δ1,ε1)·j=i

(δ2,ε2)·k=i

λ(Vj ∩ Vk) + triple intersections



,

and we know that the triple intersections consist of single points only, we can
conclude that λ(Vj ∩ Vk) = 0 for j 6= k, and therefore the boundaries of the
sets Vj have measure 0. Furthermore, we have

∑

i λ(Vi) = 1, which yields

λ(V1) = λ(V3) = λ(V5) = λ(V8) =
1

8
,

λ(V4) = λ(V6) = λ(V7) = λ(V9) =
1

16
,

λ(V2) =
1

4
.

For computing the Hausdorff-dimension of the boundaries of the sets Vj we
notice that the sets V{i,j} defined in (3.8) satisfy the relation

V{i,j} =
⋃

δ,ε,{k,`}
(δ,ε)·{k,`}={i,j}

fδ,ε(V{k,`}). (3.10)

This observation brings us in the context of graph directed sets as introduced
in [10]. The box-dimension can be computed from the dominating eigenvalue

14



of the adjacency matrix of the “boundary automaton” given in Figure 4. This
eigenvalue is the positive root µ of the equation

x3 − 2x2 + x− 4 = 0. (3.11)

This yields

dimB(∂Aj) = α =
logµ

log 2
= 1.2107605332885233950 . . . . (3.12)

For technical reasons we introduce the set V10 = ∂[0, 1]2. Then we consider
the open sets

A{i,j} =
{

(x, y) ∈ int(Vi∪Vj) | ∀k ∈ {1, . . . , 10}\{i, j} : d((x, y), V{i,j}) < d((x, y), Vk)
}

,

where d((x, y), K) := min{d
(

(x, y), (x̄, ȳ)
)

| (x̄, ȳ) ∈ K} for any compact set

K and where d denotes the Euclidean distance on R2. These sets satisfy

⋃

δ,ε,{k,`}
(δ,ε)·{k,`}={i,j}

fδ,ε(A{k,`}) ⊆ A{i,j} (3.13)

with the union being disjoint. This is the open set condition which by [11,
Theorem 9.2] implies that the Hausdorff-dimension of V{i,j} equals its box-
dimension. Thus we have

dimH(∂Aj) =
logµ

log 2
= 1.2107605332885233950 . . . . (3.14)

Figure 2 exhibits a rotational structure which has not been discussed yet. This
is a natural property of the underlying problem on elliptic curves: since there
is a symmetry in the algorithm described in the introduction between the pairs
of points (P,Q) and (P + Q,P − Q) the map (x, y) 7→ (x + y, x− y) should
preserve the structure of the sets Ai. We will prove now that this is indeed the
case. For this purpose we introduce the map T : (x, y) 7→ (x+ y mod 1, x− y
mod 1). This map satisfies

T (A2) ⊆ A1 ∪ A3 ∪ A5 ∪ A8, (3.15)

T (A4 ∪ A6 ∪ A7 ∪ A9) ⊆ A2,

T ((A1 ∩ f00(A2)) ∪ (A3 ∩ f11(A2)) ∪ (A5 ∩ f10(A2)) ∪ (A8 ∩ f01(A2)))

⊆ A4 ∪ A6 ∪ A7 ∪ A9,

T ((A1 \ f00(A2)) ∪ (A3 \ f11(A2)) ∪ (A5 \ f10(A2)) ∪ (A8 \ f01(A2)))

⊆ A1 ∪ A3 ∪ A5 ∪ A8.

Adding or subtracting two numbers given in their Simple Joint Sparse Form
is digit-wise addition (or subtraction) and subsequent correction by the rule

15



(0,±2) 7→ (±1, 0) by (2.6). We demonstrate relation (3.15); the proof of the
other relations is similar: let (x, y) be given in its Simple Joint Sparse Form.
The condition (x, y) ∈ A2 is equivalent to

x

y
=

(

0

0

.

.

1

1

δ

ε

∗
∗ · · ·

)

(in Simple Joint Sparse Form!),

since 2 is the unique state which produces two non-zero digits as output
(cf. Figure 2). Since δε = 0 we have

x + y

x− y =
(

1

0

.

.

0

0

∗
∗ · · ·

)

(in Simple Joint Sparse Form).

Therefore, T (x, y) ∈ Ai for a state i, which produces the output 0
0
, i.e., i ∈

{1, 3, 5, 8}.

4 Geometric Approach for Estimating the Joint Hamming Weight

In this section we give a derivation for an asymptotic formula for the mean
of the Hamming weight of the Joint Sparse Form. The proof follows the ideas
used by H. Delange in [7].

Theorem 5 The Hamming weight of the Joint Sparse Form of two positive
integers satisfies the following asymptotic formula

S(N) =
∑

m,n<N

h(m,n) =
N2

2
log2N +N2ψ1(log2N) +O(Nα), (4.1)

where ψ1 is a continuous periodic function of period 1 and α is given by (3.12).

9.5 10 10.5 11

0.62

0.64

0.66

0.68

0.72

0.74

Fig. 6. Plot of S(N)/N 2 − 1
2 log2 N over log2 N for N = 512, . . . , 2048.
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PROOF. Theorem 3 states that the contribution of the pair of digits (xk, yk)
to the Hamming weight of the Joint Sparse Form of the pair (m,n) equals

�
H

({

m

2k+1

}

,
{

n

2k+1

})

, where H = int(V2 ∪ V4 ∪ V6 ∪ V7 ∪ V9).

Notice that λ(H) = 1
2
. It follows immediately that

S(N) =
K
∑

k=0

∑

m,n<N

�
H

({

m

2k+1

}

,
{

n

2k+1

})

=
K
∑

k=0

∑

m,n<N

�
Hk

({

m

2k+1

}

,
{

n

2k+1

})

(4.2)
with K = blog2Nc + 2 and

Hk =
⋃

(m,n)∈2k+1H∩ � 2

[m2−k−1, (m + 1)2−k−1)× [n2−k−1, (n+ 1)2−k−1). (4.3)

This enables us to rewrite the sum as an integral

S(N) =
K
∑

k=0

∫∫

[0,N ]2

�
Hk

({

m

2k+1

}

,
{

n

2k+1

})

dmdn. (4.4)

Setting t = N2−K ∈ [1
4
, 1

2
), substituting m = 2Kx and n = 2Ky in the

integrals, and reversing the order of summation yields

S(N) = 4K
K
∑

k=0

∫∫

[0,t]2

�
HK−k

({

2k−1x
}

,
{

2k−1y
})

dx dy.

We rewrite this as

S(N) =
1

2
(K + 1)(t2K)2 + 4K

K
∑

k=0

∫∫

[0,t]2

(

�
H

({

2k−1x
}

,
{

2k−1y
})

− 1

2

)

dx dy

+ 4K
K
∑

k=0

∫∫

[0,t]2

( �
HK−k

− �
H

) ({

2k−1x
}

,
{

2k−1y
})

dx dy. (4.5)

We remark that t is a rational number with denominator 2K and therefore the
integral

∫∫

[0,t]2

(

�
H

({

2k−1x
}

,
{

2k−1y
})

− 1

2

)

dx dy = 0 for k > K,

since λ(H) = 1
2
. Thus we can extend the second summand in (4.5) to an

infinite sum without changing its value. It is natural to define the continuous
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function

Ψ(t) =
∞
∑

k=0

∫∫

[0,t]2

(

�
H

({

2k−1x
}

,
{

2k−1y
})

− 1

2

)

dx dy.

Simple computations yield Ψ( 1
4
) = − 1

16
and Ψ(1

2
) = −1

8
.

We now treat the third summand in (4.5). For this purpose we have to estimate
the integral

∫∫

[0,t]2

(
�

H`
− �

H)
({

2k−1x
}

,
{

2k−1y
})

dx dy

=
∫∫

[0,2−k+1b2k−1tc]2

(
�

H`
− �

H)
({

2k−1x
}

,
{

2k−1y
})

dx dy+
∫∫

[0,t]2\[0,2−k+1b2k−1tc]2

· · · dx dy.

(4.6)

We set

β` =
∫∫

[0,1]2

(
�

H`
− �

H) (x, y) dx dy

and remark that by the definition of the box dimension and the arguments
given in Section 3 we have β` = O((µ/4)`), where µ is given by (3.11).
Thus the first integral in (4.6) equals β`(2

−k+1b2k−1tc)2; the second inte-
gral is O((µ/4)`2−k), since it can be written as a sum over O(2k) integrals
over squares of side-length 2−k+1, and each integral gives a contribution of
O((µ/4)`).

Summing up we obtain

S(N) =
N2

2
(K+1)+4KΨ(t)+4K

K
∑

k=0

(

b2k−1tc
2k−1

)2

βK−k+4K
K
∑

k=0

O
(

(

µ

4

)K−k

2−k

)

.

(4.7)
Rewriting this and observing that the last summand is O(µK) = O(Nα) we
obtain

S(N) =
N2

2
(K + 1) + 4KΨ(t) + 4Kt2

K
∑

k=0

βK−k

− 2 · 4Kt
K
∑

k=0

{2k−1t}
2k−1

βK−k + 4K
K
∑

k=0

{2k−1t}2
4k

βK−k +O(Nα)

=
N2

2
(K + 1) + 4KΨ(t) +N2

∞
∑

k=0

βk +O(Nα), (4.8)
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where we have used that βk = O((µ/4)k). Inserting K = log2N−{log2N}+2
and using t = 2{log2 N}−2 we obtain

S(N) =
N2

2
log2N+N2

(

3

2
− 1

2
{log2N}+ 42−{log2 N}Ψ

(

2{log2 N}−2
)

+
∞
∑

k=0

βk

)

+O(Nα).

(4.9)
We notice here that a simple computation involving the adjacency matrix of
the automaton in Figure 1 proves that

∞
∑

k=0

βk =
3

16
.

The function

ψ1(x) =
27

16
− 1

2
{x}+ 42−{x}Ψ

(

2{x}−2
)

is a periodic function with period 1, which is trivially continuous in [0, 1).
Furthermore, ψ1(0) = limx→1− ψ1(x) = 11

16
. Thus the theorem is proved. 2

5 Exponential sums and Central Limit Theorem

In this section we will prove a central limit theorem for the Hamming weight
of the Joint Sparse Form.

Theorem 6 The following equation holds uniformly for all x ∈ R and any
ε > 0

1

N2
#







m,n < N | h(m,n)− 1
2
log2 N

1
4

√

log2N
< x







=
1√
2π

∫ x

−∞
e−

t2

2 dt+O
(

(logN)−
1
6
+ε
)

.

(5.1)

The automaton for calculating the Simple Joint Sparse Form given in Figure 1
can also be used to compute the Hamming weight of the representation (simply
map any output different from 0

0
to 1). Furthermore, the Hamming weight

which results from a transition from i to j depends on i only, cf. Figure 2.
Therefore, there is no look-ahead needed for calculating the Hamming weight.

For the proof of Theorem 6 we use exponential sums. For this purpose we
calculate

f(m,n) = eith(m,n)

in terms of the binary digits of m and n. For each pair of digits (δ, ε) we
define a matrix Mδ,ε in the following way: its (k, `)-th entry equals eith, if the
automaton reads (δ, ε) and writes h while going from state k to state ` and 0
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otherwise (z = eit)

M0,0 =













1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 z 0 0 0 0 0
0 z 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 z 0 0
0 z 0 0 0 0 0 0 0













, M0,1 =













0 0 0 0 0 0 z 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 z
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0













,

M1,0 =













0 0 0 z 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 z 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0













, M1,1 =













0 z 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 0 0 0 0 z 0 0 0
0 0 1 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 z
0 0 1 0 0 0 0 0 0













.

Then it is an immediate consequence of the definition of the matrices Mδ,ε

that

f(m,n) = ~vT
L
∏

`=0

Mm`,n`
M2

0,0~v, (5.2)

for

m =
L
∑

`=0

m`2
`, n =

L
∑

`=0

n`2
`

and
~vT = (1, 0, 0, 0, 0, 0, 0, 0, 0).

The factor M 2
0,0 adds two leading 0s to the expansions of m and n to output

the possible carries that could still occur.

The function f(m,n) can be expressed in terms of the “bivariate 2-multiplicative
matrix function” (cf. [12])

M(m,n) =
L
∏

`=0

Mm`,n`
. (5.3)

We recall here that a (scalar) function ϕ is 2-multiplicative (cf. [13]), if

ϕ

(

L
∑

`=0

ε`2
`

)

=
L
∏

`=0

ϕ(ε`).

We now study the summatory functions

E(N) =
∑

m,n<N

eith(m,n),

F (N) =
∑

m,n<N

M(m,n).

The function F satisfies the relations

F (2N) =
1
∑

δ,ε=0

∑

2m+δ<2N
2n+ε<2N

M(2m + δ, 2n+ ε) =
1
∑

δ,ε=0

Mδ,εF (N)
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and

F (2N + 1) =
1
∑

δ,ε=0

∑

2m+δ<2N+1
2n+ε<2N+1

M(2m + δ, 2n+ ε)

=
1
∑

δ,ε=0

Mδ,εF (N) +
∑

n<2N

M(2N, n) +
∑

m<2N

M(m, 2N) +M(2N, 2N).

Setting A =
∑1

δ,ε=0Mδ,ε and

G1(N) =
∑

n<N

M(N, n), G2(N) =
∑

m<N

M(m,N) (5.4)

we can rewrite this as

F (2N) = AF (N)

F (2N + 1) = AF (N) +B1,0G1(N) +B2,0G2(N) +M0,0M(N,N),
(5.5)

where B1,0 = M0,0 +M0,1 and B2,0 = M0,0 +M1,0.

The functions G1 and G2 satisfy the recurrence relations

Gi(2N) = Bi,0Gi(N)

Gi(2N + 1) = Bi,1Gi(N) + CiM(N,N)
i = 1, 2, (5.6)

where B1,1 = M1,0 + M1,1, B2,1 = M0,1 + M1,1, C1 = M1,0, and C2 = M0,1.
Iterating (5.6) yields

Gi

(

L
∑

`=0

ε`2
`

)

=
L
∑

`=0

ε`

`−1
∏

j=0

Bi,εj
Ci

L
∏

j=`+1

Mεj ,εj
. (5.7)

Inserting (5.7) into (5.5) and iterating yields F (N) = F0(N)+F1(N)+F2(N)
with (i = 1, 2)

F0

(

L
∑

`=0

ε`2
`

)

=
L
∑

`=0

ε`A
`M0,0

L
∏

p=`+1

Mεp,εp
,

Fi

(

L
∑

`=0

ε`2
`

)

=
L
∑

`=0

ε`A
`Bi,0

L
∑

j=`+1

εj

j−1
∏

k=`+1

Bi,εk
Ci

L
∏

k=j+1

Mεk,εk
.

(5.8)

The matrices Mδ,ε only have eigenvalues 0 and 1. The matrices Bi,ε have the
characteristic polynomial

x6 (x− 1)
(

x2 − x− 2eit
)

,
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where the roots of the last factor are less than 2 in modulus. The characteristic
polynomial of the matrix A is

x (x− 1)
(

x2 − x− 2eit
)2 (

x3 − x2 − 8eitx− 16e2it
)

.

The dominating eigenvalue µ(t) is a root of the fourth factor and has the
following Taylor expansion around t = 0

µ(t) = 4 + 2it− 5t2

8
− 25it3

192
+

131t4

6144
+O(t5), (5.9)

furthermore, |µ(t)| ≤ 4. We will denote the modulus of the second largest
eigenvalue by β(t). Numerical studies show that 2 = β(0) ≤ β(t) ≤ β(π) =
3.04276 . . ..

Since the arguments follow the same lines as in [8], we only give a sketch of
the proof. We split the sums in (5.8) into the contribution which comes from
the dominating eigenvalue and a remainder term, which originates from the
other eigenvalues. Let T−1AT = diag(µ(t), . . .) be the diagonalization of A
and Λ = T diag(µ(t)−1, 0, . . . , 0)T−1. We define

Ψ0 ((x0, x1, . . .)) =
∞
∑

`=0

x`Λ
`M0,0

`−1
∐

p=0

Mxp,xp

Ψi ((x0, x1, . . .)) =
∞
∑

`=0

x`Λ
`Bi,0

`−1
∑

j=0

xj

`−1
∐

k=j+1

Bi,xk
Ci

j−1
∐

k=0

Mxk,xk
,

(5.10)

where
∐b

j=a zj = zbzb−1 · · · za. Furthermore, we set Ψ = ~vT (Ψ0+Ψ1+Ψ2)M
2
0,0~v.

The function Ψ is continuous on the infinite product space {0, 1}
�

0 . Using this
notation we can write

E(N) = µ(t)log2 Nµ(t)−{log2 N}Ψ((εL, εL−1, . . . , ε0, 0
(∞))) +O(N logN).

Since E(N + 1) − E(N) = O(N) by definition, Ψ descends to a continuous
function on [1, 2] by a general argument given in [14]. See also [15].

Thus we have for |t| = o(log− 1
3 N)

∑

m,n<N

eith(m,n) = N2+ it
2 log 2

− t2

32 log 2
+O(t3)ψ(t, log2N) +O

(

N log2 β(t)
)

(5.11)

for the continuous periodic function ψ(t, log2N) = µ(t)−{log2 N}Ψ(2{log2 N}).
Differentiation with respect to t and inserting t = 0 yields a second proof for
Theorem 5 (the justification that this procedure really exhibits the asymptotic
expansion uses the same argument as given in [12]). We notice here that this
“analytic” approach gives better error terms than the “geometric” approach
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in Section 3. Nevertheless, we included the geometric proof, since it gives more
insight.

Differentiating twice yields

∑

m,n<N

h(m,n)2 =
1

4
N2 log2

2N+
1

16
N2 log2N+N2(log2N)ψ1(log2N)+N2ψ2(log2N)

+O(N logN),

where ψ1 and ψ2 are continuous periodic functions related to the derivatives
of ψ(t, ·). From this we compute the “variance”

1

N2

∑

m,n<N

h(m,n)2−




1

N2

∑

m,n<N

h(m,n)





2

=
1

16
log2N+ψ2(log2N)−ψ2

1(log2N)+o(1).

We now use a procedure which is totally similar to the proof of the central
limit theorem [8, Theorem 3]. From (5.11) we derive

1

N2

∑

m,n<N

exp



it
h(m,n)− 1

2
log2N

1
4

√

log2 N



 = e−
t2

2

(

1 +O(|t|3 log− 1
2 N)

)

. (5.12)

An application of the Berry-Esseen inequality (cf. [16–18]) to (5.12) yields
(5.1).

6 Higher Dimensions

It is now natural to ask whether it is possible to extend the notion of Joint
Sparse Form to higher dimensions. In this section we will generalize the syn-
tactic results obtained in Section 2.2. It is clear that the other methods have
such a generalization, too.

Let x(1), . . . , x(d) be integers, d ≥ 1. A joint expansion of x(1), . . . , x(d)

is a matrix (x
(k)
j )1≤k≤d

0≤j≤`

with entries 0, ±1 such that x(k) =
∑`

j=0 x
(k)
j 2j for

1 ≤ k ≤ d. Its joint Hamming weight is the number of 0 ≤ j ≤ ` such that
there is a 1 ≤ k ≤ d with x

(k)
j 6= 0. We want to find a joint expansion of the

given integers with minimum joint Hamming weight.

We will now describe a method for transforming a joint expansion into a
minimal joint expansion. For a joint expansion X = (x

(k)
j ), we set

Aj(X) := {1 ≤ k ≤ d | x(k)
j 6= 0}.
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Let now X be a given joint expansion of x(1), . . . , x(d). If A0(X) = ∅, there is no

choice, and the column of zeros is written. If A1(X) ⊆ A0(X), we replace x
(k)
0

by −x(k)
0 for k ∈ A1(X), which yields a new joint expansion X ′ with A1(X

′) =
∅, i.e., the next column will be a zero column. However, if A1(X)\A0(X) 6= ∅,
it is impossible to have a zero column in the first two steps. Therefore, we
replace x

(k)
0 by −x(k)

0 for all k ∈ A0(X) \ A1(X). This new expansion X ′ has
A1(X

′) = A1(X) ∪ A0(X), which is good since it may allow a zero column in
the third step. This procedure is summarized in Algorithm 2.

Algorithm 2 d-dimensional Simple Joint Sparse Form

Input: x(1), . . . , x(d) integers
Output: (x

(k)
j )1≤k≤d

0≤j≤`

Simple Joint Sparse Form of x(1), . . . , x(d)

j ← 0
A0 ← {k | x(k) odd}
while ∃k : x(k) 6= 0 do
x

(k)
j ← x(k) mod 2, 1 ≤ k ≤ d

Aj+1 ← {k | (x(k) − x(k)
j )/2 ≡ 1 (mod 2)}

if Aj+1 ⊆ Aj then
for all k ∈ Aj+1 do

x
(k)
j ← −x(k)

j

end for
Aj+1 ← ∅

else
for all k ∈ Aj \ Aj+1 do

x
(k)
j ← −x(k)

j

end for
Aj+1 ← Aj ∪ Aj+1

end if
x(k) ← (x(k) − x(k)

j )/2, 1 ≤ k ≤ d
j ← j + 1

end while

It is clear that Algorithm 2 yields a joint expansion X which satisfies the
following syntactical rule:

Aj+1(X) % Aj(X) or Aj+1(X) = ∅, j ≥ 0. (6.1)

We call any joint expansion of x(1), . . . , x(d) which satisfies this rule a Simple
Joint Sparse Form of x(1), . . . , x(d). It is clear that this notion is a generaliza-
tion of the non-adjacent form (for d = 1) and the Simple Joint Sparse Form
for d = 2.

Theorem 7 Let d ≥ 1 and x(1), . . . , x(d) be integers. Then there is a unique
joint expansion which satisfies (6.1).
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Furthermore, the joint Hamming weight of the Simple Joint Sparse Form is
minimal amongst all joint expansions.

PROOF. The existence of the Simple Joint Sparse Form is proved by Algo-
rithm (6.1).

We now prove uniqueness. Let X = (x
(k)
j )1≤k≤d

0≤j≤`

and Y = (y
(k)
j )1≤k≤d

0≤j≤`

be Sim-

ple Joint Sparse Forms of the same integers x(1), . . . , x(d). Without loss of
generality, we may assume that there is a 1 ≤ k ≤ d such that x

(k)
0 6= y

(k)
0 .

Since 2x
(k)
1 +x

(k)
0 ≡ 2y

(k)
1 + y

(k)
0 (mod 4), we get x

(k)
1 6≡ y

(k)
1 (mod 2). Without

loss of generality, we assume x
(k)
1 = ±1. Since A1(X) 6= ∅, there is a k′ ∈

A1(X) \ A0(X) by (6.1). We have x
(k′)
0 = y

(k′)
0 = 0 and x

(k′)
1 ≡ y

(k′)
1 (mod 2).

Therefore, A1(Y ) 6= ∅, which implies by (6.1) that k ∈ A0(Y ) $ A1(Y ), hence

y
(k)
1 6= 0, a contradiction.

We now prove minimality. Let X be a joint expansion of x(1), . . . , x(d) of
minimal Hamming weight. For j ≥ 0 we set hj(X) := 1 if Aj(X) 6= ∅ and
hj(X) := 0 otherwise. for j ≥ 0. Without loss of generality, we may as-
sume that (h0(X), h1(X), . . . ) is lexicographically minimal amongst all mini-
mal joint expansions. Moreover, we may assume that

Aj+1(X) ⊇ Aj(X) or Aj+1 = ∅, j ≥ 0.

This may be achieved by replacing (x
(k)
j+1, x

(k)
j ) = (0, x

(k)
j ) by (x′j+1

(k), x′j
(k)) =

(x
(k)
j ,−x(k)

j ) where necessary.

Assume now that ∅ 6= Aj(X) = Aj+1(X). Let m = min{i ≥ j : Ai(X) = ∅}
and set m(k) = min{i ≥ j : x

(k)
i 6= x

(k)
j } for k ∈ Aj(X). By definition, j + 1 ≤

m(k) ≤ m. We now replace
(

x
(k)

m(k) , . . . , x
(k)
j

)

by
(

(x
(k)

m(k) +x
(k)
j ), 0, . . . , 0,−x(k)

j

)

for k ∈ Aj(X) and call the new expansion X ′. By construction, it is a joint

expansion (with digits 0,±1). For any k ∈ Aj(X), we have x′
(k)
j+1 = 0: If

m(k) > j + 1, this is clear, if m(k) = j + 1, we have x
(k)
j+1 = −x(k)

j and therefore

x′
(k)
j+1 = x

(k)
j+1 + x

(k)
j = 0. This implies Aj+1(X

′) = ∅. On the other hand, by
minimality ofX, we have Am(X ′) 6= ∅. Thus we have constructed an expansion
of the same joint Hamming weight which has smaller (h0(X

′), h1(X
′), . . . ), a

contradiction to our assumptions on X. Therefore, X is the Simple Joint
Sparse Form. 2
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