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AUTOMATIC SOLUTION OF FAMILIES OF THUE EQUATIONS AND AN

EXAMPLE OF DEGREE 8

CLEMENS HEUBERGER, ALAIN TOGBÉ, AND VOLKER ZIEGLER

Abstract. We describe a procedure implemented in Mathematica r© to solve parametrized families
of Thue equations Fn(X, Y ) = ±1, where Fn is a binary irreducible form in X and Y of degree
d ≥ 3 whose coefficients are polynomials in the parameter n. This procedure uses Baker’s method
and asymptotic expansions of the quantities involved with exact remainder terms. As an example,
we solve a family of degree 8.

1. Introduction

Let F ∈ Z[X, Y ] be a binary irreducible form of degree d ≥ 3 and m 6= 0 an integer. The
Diophantine equation

F (x, y) = m

is called a Thue equation, remembering that A. Thue [Thu09] proved that it only has finitely many
solutions in integers x, y. Nowadays, the solution of a single Thue equation can be found algorithmi-
cally using Baker’s method [Bak68] and reduction techniques to reduce the usually big upper bound
coming from the linear form estimates, cf. Bilu and Hanrot [BH96].

In 1990, E. Thomas [Tho90] first considered a parametrized family of Thue equations with positive
discriminant. Since that time, several such families Fn(X, Y ) = m have been solved, where Fn ∈
Z[n][X, Y ] is a binary irreducible form in X and Y whose coefficients are polynomials in the parameter
n, cf. for instance [Heu00] or Wakabayashi [Wak02b] or the online survey [Heu]. In all these families,
there were some polynomial solutions (x, y) ∈ Z[n] × Z[n] such that Fn(x, y) = m holds in Z[n] and
therefore for every specialization of n to a concrete integer. Moreover, there were finitely many extra
solutions (x, y) for finitely many values of the parameter n. We will call these solutions “sporadic
solutions”. In all papers, a bound n0 has been found such that for n ≥ n0, there are no sporadic
solutions. If n0 was small enough, all sporadic solutions could also be found by solving each of the
equations for the remaining values of n separately.

Many of these families have been solved by using Baker’s method combined with direct arguments
to exclude solutions of small and medium size. In these cases, the explicit calculations used for single
equations have been replaced by asymptotic calculations involving the parameter n. Whereas these
calculations can be done easily for equations of small degree, this becomes more or less impossible
to do by hand for larger degrees: it is not sufficient to know the leading terms of the asymptotic
expansions, but the knowledge of an explicit error bound is also necessary.

The aim of the present paper is to provide a procedure to do these calculations automatically. It
has been implemented in Mathematica r© and is available at http://finanz.math.tu-graz.ac.at/

~ziegler/Publications/AutomaticSolutionofThueEq. We describe the general framework and the
principles used in the implementation of the routines. We address some particular technical problems
which arise and their solutions in our package. Of course, we cannot expect to solve every given family
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of Thue equations: it is known (cf. Lettl [Let]) that there are families of Thue equations which have
infinitely many sporadic solutions. We do not make any attempt to implement the solution via Padé
approximations, although they have been used for the solution of some families, too.

We demonstrate the use of our routines by solving a family of Thue equations of degree 8. To
our knowledge, it is the first time that a family of degree > 6 is solved. Furthermore, we reconsider
some families which have been solved previously “by hand” and apply our machinery. At the present
state, we cannot reach the best known constants n0 (as defined above), since our routines do not yet
implement all tricks used in the previous papers. In particular, we always use the linear form in d
logarithms directly, whereas the number of logarithms can sometimes be reduced by a careful study.
Since the constants in linear form estimates depend on the number of logarithms dramatically, the
results can be improved.

For the family of degree 8, the CPU time for the calculations was considerable (around 30 days on
a Pentium 4 with 2 GHz running under Linux), which was also due to the fact that the coefficients of

the asymptotic expansions were elements of Q(
√

2). The example of degree 5, where the coefficients
belong to Q, can be solved in two to three hours. In the cubic case, it takes only a few minutes to get
the result.

The remainder of the paper is organized as follows: In Section 2, we recall the general framework
avoiding technical details as much as possible. Section 3 describes the implementation in more detail.
The family of degree 8 is solved in Section 4. Section 5 is devoted to the known families of lower
degree.

2. The procedure

We now give an outline of our procedure to solve parametrized families of Thue equations. We
consider the Thue equation

(1) Fn(X, Y ) = ±1,

where Fn ∈ Z[n][X, Y ] is an irreducible form of degree d ≥ 3 and sufficiently large n. Let fn(X) :=
Fn(X, 1) and denote the roots of fn by α(1), . . . , α(d). We assume that fn is monic and all roots
α(1), . . . , α(d) are real. Let K(k) = Q(α(k)) be the number field generated by α(k) and let oK(k) be its
ring of algebraic integers (1 ≤ k ≤ d). We call a solution (x, y) to equation (1) trivial if |y| ≤ 1.

Let η
(1)
1 , . . . , η

(1)
r with r = d − 1 be a system of independent units in oK(1) , then let η

(k)
i denote

the k-th conjugate of η
(1)
i (1 ≤ i ≤ r, 1 ≤ k ≤ d). Obviously η

(k)
1 , . . . , η

(k)
r is a system of independent

units in oK(k) (1 ≤ k ≤ d). We assume log |η(k)
i | � log n, where g � h means that there is some

effectively computable constant c such that |g| < c · h.
Let (x, y) be a solution to (1) and choose 1 ≤ j ≤ d such that

∣
∣
∣x − α(j)y

∣
∣
∣ = min

i
|x − α(i)y|.

We say that (x, y) is a solution of type j and we define β(k) := x−α(k)y (1 ≤ k ≤ d). So equation (1)
can be rewritten as

(2) Fn(x, y) = (x − α(1)y) · · · (x − α(d)y) = β(1) · · ·β(d) = NK(k)

Q

(

β(k)
)

= ±1,

where NK(k)

Q denotes the norm.
Then we have

|y|
∣
∣
∣α(i) − α(j)

∣
∣
∣ =

∣
∣
∣(x − α(i)y) − (x − α(j)y)

∣
∣
∣ ≤

∣
∣
∣x − α(i)y

∣
∣
∣+
∣
∣
∣x − α(j)y

∣
∣
∣ ≤

∣
∣
∣2β(i)

∣
∣
∣
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for i 6= j. This implies together with equation (2)

(3) |β(j)| ≤ 2d−1

|y|d−1
∏

i6=j |α(i) − α(j)| =
2d−1

|y|d−1|f ′
n(α(j))| .

We further assume |f ′
n(α(j)) · (α(i) − α(j))| � n for i 6= j. This implies

log
∣
∣
∣β(i)

∣
∣
∣ = log

∣
∣
∣x − α(j)y − (α(i) − α(j))y

∣
∣
∣

= log |y| + log
∣
∣
∣α(i) − α(j)

∣
∣
∣+ log

(

1 − β(j)

y(α(i) − α(j))

)

= log |y| + log
∣
∣
∣α(i) − α(j)

∣
∣
∣− β(j)

y
· 1

α(i) − α(j)
+ O

(
1

n2

)

(4)

for i 6= j.
Since β(k) is a unit by (2), there are integers b1, . . . , br and I with

I ≤
[

o
×
K(k) : 〈−1, η

(k)
1 , . . . , η(k)

r 〉
]

such that

(5) log
∣
∣
∣β(k)

∣
∣
∣ =

b1

I
log
∣
∣
∣η

(k)
1

∣
∣
∣+ · · · + br

I
log
∣
∣
∣η(k)

r

∣
∣
∣ , k 6= j.

Solving this system of linear equations by Cramer’s rule we obtain

(6) R
bk

I
= uk log |y| + vk − βj

y
wk + rk

for 1 ≤ k ≤ r, where

uk = det
(

log
∣
∣
∣η

(i)
1

∣
∣
∣ , . . . , log

∣
∣
∣η

(i)
k−1

∣
∣
∣ , 1, log

∣
∣
∣η

(i)
k+1

∣
∣
∣ , . . . , log

∣
∣
∣η(i)

r

∣
∣
∣

)

i6=j
,

vk = det
(

log
∣
∣
∣η

(i)
1

∣
∣
∣ , . . . , log

∣
∣
∣η

(i)
k−1

∣
∣
∣ , log

∣
∣
∣α(i) − α(j)

∣
∣
∣ , log

∣
∣
∣η

(i)
k+1

∣
∣
∣ , . . . , log

∣
∣
∣η(i)

r

∣
∣
∣

)

i 6=j
,

wk = det

(

log
∣
∣
∣η

(i)
1

∣
∣
∣ , . . . , log

∣
∣
∣η

(i)
k−1

∣
∣
∣ ,

1

α(i) − α(j)
, log

∣
∣
∣η

(i)
k+1

∣
∣
∣ , . . . , log

∣
∣
∣η(i)

r

∣
∣
∣

)

i6=j

,

rk = det

(

log
∣
∣
∣η

(i)
1

∣
∣
∣ , . . . , log

∣
∣
∣η

(i)
k−1

∣
∣
∣ , O

(
1

n2

)

, log
∣
∣
∣η

(i)
k+1

∣
∣
∣ , . . . , log

∣
∣
∣η(i)

r

∣
∣
∣

)

i6=j

= O

(
logr−1 n

n2

)

,

R = det
(

log
∣
∣
∣η

(i)
1

∣
∣
∣ , . . . , log

∣
∣
∣η

(i)
k−1

∣
∣
∣ , log

∣
∣
∣η

(i)
k

∣
∣
∣ , log

∣
∣
∣η

(i)
k+1

∣
∣
∣ , . . . , log

∣
∣
∣η(i)

r

∣
∣
∣

)

i6=j
.

In the next section we will compute the value of O(1/n2) in rk more explicitly. We take some constant
integers λ0, λ1, . . . , λr and consider

b := λ0I +

r∑

k=1

λkbk, u :=

r∑

k=1

λkuk, v := λ0R +

r∑

k=1

λkvk,

w :=
r∑

k=1

λkwk , r :=
r∑

k=1

λkrk.

From (6) we deduce that

(7) R
b

I
= u log |y| + v − β(j)

y
· w + r.
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We try to choose λ0, . . . , λr in such a way that

1

n
� u � logr−1 n

n

v � logr−1 n

n

sign(u) = sign

(

u log y0 + v −
∣
∣
∣
∣

w

2f ′
n(α(j))

∣
∣
∣
∣
+ r

)

= 1,(8)

where y0 is a lower bound for nontrivial |y| (|y| > 1). From the definition one can always choose
y0 = 2. In Section 3.5, we will discuss how to obtain a better lower bound y0 for |y|. For |y| ≥ y0 this
implies

R
b

I
> 0,

hence |b| ≥ 1. By a theorem of Friedman [Fri89] we further obtain

|R|
I

≥ |R|
[o×

K(k) : 〈−1, η
(k)
1 , . . . , η

(k)
r 〉]

=
|R|

|R|/Reg(K(k))
= Reg(K(k)) > 0.2

and so I ≤ 5 · |R|. From this inequality we also obtain |Rb
I | > 0.2.

Using (7), we solve |Rb̄/I | > 0.2 for log |y| and we obtain

(9) log |y| � n

logr−1 n
,

if y is nontrivial (|y| > 1).
Let H(n) be an upper bound for the coefficients of Fn. Since the coefficients of Fn(X, Y ) are polyno-

mials in n, we have log H(n) � log n. Since we assume log
∣
∣
∣η

(k)
i

∣
∣
∣� log n we obtain Reg(K(k)) � log n.

Using a theorem of Bugeaud and Győry [BG96] we obtain

(10) log |y| � log2r n · log log n,

a contradiction to (9). So we have n � 1. Since all bounds are effectively computable one can give
an explicit bound n0, such that (1) has only solutions (x, y) of type j with |y| ≤ 1 for n ≥ n0. We
will compute n0 in the next section.

The upper bound obtained from the theorem of Bugeaud and Győry can be improved using Baker’s
method directly. From (3) we get

∣
∣
∣x − α(j)y

∣
∣
∣ ≤ c1

|y|d−1
,

with

c1 =

∣
∣
∣
∣

2d−1

f ′
n(α(j))

∣
∣
∣
∣
.

The c1, . . . are all effectively computable constants depending on n, α(k) and η
(k)
i for 1 ≤ k ≤ d, 1 ≤

i ≤ r. From this inequality we obtain

(11) sign(y)α(j) − c1

|y|d <
x

|y| < sign(y)α(j) +
c1

|y|d ,

hence

(12) y ·
(

α(j) − α(i)
)

− c1

|y|d−1
< β(i) < y ·

(

α(j) − α(i)
)

+
c1

|y|d−1
.
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Putting B := max |bi| and solving (5) with Cramer’s rule we get the estimate

(13)
B

I
≤ r · maxi6=j(∆

(j)
i ) · maxi6=j(

∣
∣log |β(i)|

∣
∣)

R
≤ c2 max

i6=j

∣
∣
∣log |β(i)|

∣
∣
∣ ,

where

∆
(j)
i =

∣
∣
∣(log |η(l)

k |)k 6=i,l6=j

∣
∣
∣

are the cofactors of R. The ∆
(j)
i can be estimated by Hadamard’s inequality:

Lemma 1. Let A = (aij)1≤i,j,≤n a (n × n)-matrix with real entries then

(det A)2 ≤
n∏

j=1

n∑

i=1

(aij)
2.

Using (12) and (13) one obtains

(14)
B

I
≤ c3 log |y|,

with

c3 = c2 · max
i6=j



1 +
log
(∣
∣α(j) − α(i)

∣
∣+ c1

yd
0

)

log y0



 .

For k 6= l ∈ {1, 2, . . . , d} \ {j} one obtains by Siegel’s identity and (12)

(15)

∣
∣
∣
∣
1 − α(j) − α(k)

α(j) − α(l)

β(l)

β(k)

∣
∣
∣
∣
=

∣
∣
∣
∣

α(k) − α(l)

α(j) − α(l)

β(j)

β(k)

∣
∣
∣
∣
≤ c4

|y|d ,

with

c4 =

∣
∣
∣
∣

α(k) − α(l)

α(j) − α(l)

∣
∣
∣
∣

c1
∣
∣α(j) − α(k)

∣
∣− c1

yd
0

.

Next we will use a theorem of Matveev [Mat00, Corollary 2.3].

Lemma 2. Denote by α1, . . . , αn algebraic numbers, not 0 or 1, by log α1, . . . , log αn determinations
of their logarithms, by D the degree over Q of the number field K = Q(α1, . . . , αn), and by b1, . . . , bn

rational integers. Define B = max{|b1|, . . . , |bn|}, and Ai = max{Dh(αi), | log αi|, 0.16} (1 ≤ i ≤ n),
where h(α) denotes the absolute logarithmic Weil height of α. Assume that the number Λ = b1 log α1+
· · · + bn log αn does not vanish; then

|Λ| ≥ exp{−C(n, κ)D2A1 · · ·An log(eD) log(eB)},

where κ = 1 if K ⊂ R and κ = 2 otherwise and

C(n, κ) = min

{
1

κ

(
1

2
en

)κ

30n+3n3.5, 26n+20

}

.

Applying this theorem to

(16) Λ = I log

∣
∣
∣
∣

α(j) − α(k)

α(j) − α(l)

∣
∣
∣
∣
+ u1 log

∣
∣
∣
∣
∣

η
(l)
1

η
(k)
1

∣
∣
∣
∣
∣
+ · · · + ur log

∣
∣
∣
∣
∣

η
(l)
r

η
(k)
r

∣
∣
∣
∣
∣
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and using the estimate | log x| < 2|x − 1| for |x − 1| ≤ 1
3 together with (14) and (15) it results

exp(− log I − c5 log(eB)) ≤
∣
∣
∣
∣
∣
log

∣
∣
∣
∣

α(j) − α(k)

α(j) − α(l)

∣
∣
∣
∣
+

u1

I
log

∣
∣
∣
∣
∣

η
(l)
1

η
(k)
1

∣
∣
∣
∣
∣
+ · · · + ur

I
log

∣
∣
∣
∣
∣

η
(l)
r

η
(k)
r

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤ 2c4

|y|d = exp

(

c6 − c7
B

I

)

,

where c5 comes from the theorem of Matveev (Lemma 2), c6 = log 2 + log c4 and c7 = d
c3

, for B > I .
From the inequality

(17) log I + c5 + c5 log B > c7
B

I
− c6

one obtains an upper bound c8 for B and by (13) and (4) an upper bound c9 for log y with

c9 = c8 ·
(

r∑

i=1

∣
∣
∣log |η(k)

i |
∣
∣
∣

)

− log
(∣
∣
∣α(j) − α(k)

∣
∣
∣− c1

2d

)

.

The computation of the quantities c1, . . . will be described in Section 3.4.

3. Implementation

This section describes the basic ideas of implementing the procedure described above.

3.1. “Exact O-Notation”. One of the main problems is that the roots α(1), . . . , α(d) are not known
explicitly. But it suffices to know an asymptotic approximation of the roots. This can be done by
some symbolic steps of Newton’s method. In the following we use the L-notation. Let c be a real
number, assume f(x), g(x) and h(x) are real functions and h(x) > 0 for x > c. We will write

f(x) = g(x) + Lc(h(x))

for
g(x) − h(x) ≤ f(x) ≤ g(x) + h(x).

The use of the L-notation is like the use of the O-notation but with the advantage to have an explicit
bound for the error term. The following lemma is obvious from the definition and some power series
expansions of elementary functions.

Lemma 3. Let h(x) and g(x) be real functions and let f(x), f1(x) and f2(x) be non-negative real
functions for x > c, x > c1 and x > c2 respectively. Then

(1)

(h(x) + Lc1(f1(x))) + (g(x) + Lc2(f2(x))) = h(x) + g(x) + Lmax(c1,c2)(f1(x) + f2(x)).

(2)

(h(x) + Lc1(f1(x))) · (g(x) + Lc2(f2(x)))

= h(x)g(x) + Lmax(c1,c2)(|g(x)|f2(x) + |h(x)|f1(x) + f1(x)f2(x)).

(3) Assume 0 ≤ f(x) < h(x) if x > c, then

log(h(x) + Lc(f(x))) = log(h(x)) + Lc

(
f(x)

h(x) − f(x)

)

.

(4) Assume 0 ≤ f(x) < |h(x)| for x > c, then

1

h(x) + Lc(f(x))
=

1

h(x)
+ Lc

(
f(x)

h(x) · (h(x) − f(x))

)

.
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For computing expressions (we want to compute determinants) with entries in L-notation it is
useful to keep the L-term as simple as possible. We define:

Definition 1. The quantity z is said to be given in simple L-form, if there are some c ∈ R, a, b ∈ Z

and R(n, log n) such that z = R(n, log n) + L(c · na · logb n).

However, Lemma 3 does not give simple L-forms, so we have to simplify the results of Lemma 3 to
that form.

Subroutine (Simplify L-form) : Given g ∈ R(X, Y ), find a, b ∈ Z and c, m ∈ R such that

g(n, log n) = Lm(c · na · logb n)

and the L-term has still the same order of magnitude as g.
To find a, b, c is rather easy. Let

g(X, Y ) =
f(X, Y )

h(X, Y )
,

where f(X, Y ) and h(X, Y ) are polynomials. Let f1 = c1X
a1Y b1 and h1 = c2X

a2Y b2 be the monomials
of highest degree (lexicographically) of f(X, Y ) and h(X, Y ) respectively, further let f2 = c3X

a3Y b3

be the monomial of highest degree 6= f1 of f such that sign c3 = sign c1 (if no such monomial exists

set c3 = 0). Then set a = a1 − a2, b = b1 − b2, c′ = |c1|+|c3|
|c1|

and c = c′|c1/c2|. In practice

one will get numerical problems to calculate m if (c1 + c3)/c1 is too close to 1. So we will set
c′ = max(1.1, (|c1| + |c3|)/|c1|).

To get m we have to find an upper bound for the real solutions of cna logb n − g(n, logn) = 0 if
such solutions exist, otherwise set m = 0. So we have reduced our problem to finding an upper bound
for the largest root of f(n, log n) = 0 for some given polynomial f . We will use two routines to get
that upper bound.

(1) We will substitute log n = q and treat q as an independent variable. Let p = 1 + degq f , let

fi(q) be the coefficient of ni and let di be the leading coefficient of fi. We will construct a
new function f(n) such that f(n) ≤ f(n, log n) for n ≥ m−1 as follows:
(a) If di > 0 let m′

i be the largest real solution of fi(q) = di (if it doesn’t exist set mi = 0),

set f i := di and mi = exp(m′
i).

(b) If di < 0 let m′
i be the largest real solution of log n = n/p if such exist (which is the case

for p ≥ 3) and set m′
i = 0 otherwise. Set all coefficients in fi(q) which are > 0 to 0 and

substitute q = n1/p. Set mi = m′
i
p
.

Let f(n) be the function obtained by these substitutions and let m−1 = maxi(mi), then
for all n > m−1 we have

f̄(n) ≤ f(n, logn) for n ≥ m−1.

Let m−2 be an upper bound for the largest real root of f̄ then m = max(m−1, m−2) is an upper
bound for n such that f(n, logn) = 0. We can compute m−2, since the substitution n → np

transforms f̄ into a polynomial. Since there are algorithms (as implemented in Mathematica
or Pari) to find all roots, in particular the largest real root of a polynomial, we are done.

(2) Similar to the first routine we will construct a function f̃(n) such that f̃(n) ≤ f(n, logn) for

n ≥ m0 with q = log n. To obtain f̃(n) we set all coefficients of f that are positive to 0 except
the leading term (in lexicographical order). Then we substitute q = n1/p where p = degq f .
Let m′

0 be the largest real root of log n = n/p (if no real root exists let m′
0 = 0) and let

m0 = m′
0
p
. We obtain

f̃(n) ≤ f(n, log n) for n ≥ m0.
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Let m1 be the largest real root of f̃(n) = 0 then m = max(m0, m1) is an upper bound for the
root n of f(n, logn) = 0.

Now we take the minimum of the bounds obtained by these two routines.

Next we want to obtain a simple L-form of the logarithm of a simple L-form. This can be done by
using Lemma 3 and the following result.

Lemma 4.

log(R(n) + L(c/nk)) = a · q + log b + Q(n) + L

(
d

nl

)

,

where bna is the main part of the Laurent expansion at ∞ of R(n), Q(n) ∈ R[n, 1/n] with Q(n) = o(1),
l = a + k and d is some effectively computable constant depending on R.

Proof: Using the power series for log and Lemma 3 one obtains

log
(
R(n) + L(c/nk)

)
= log(R(n)) + L

(
c

nkR(n) − c

)

= log(bna + T (n)) + L(c1/na+k)

with T (n) = R(n) − bna = o(R(n)). The power series expansion of log R(n) at cna gives the lemma.

�

3.2. Calculation of the necessary quantities in simple L-form. We will use the index of the
L-notation only for concrete computations and will omit it for brevity in most cases. We assume
that the roots α(j) are given in simple L-form. We further assume a system of independent units

η
(i)
1 , . . . , η

(i)
r is given by rational functions Ri(x) such that Ri(α

(1)) = η
(1)
i . Using Lemma 3 and the

described procedure to get simple L-terms, we can easily compute all units η
(1)
i and their conjugates

in simple L-form.
Using Lemma 4 one gets the matrix








log
∣
∣
∣η

(1)
1

∣
∣
∣ . . . log

∣
∣
∣η

(1)
r

∣
∣
∣

...
. . .

...

log
∣
∣
∣η

(d)
1

∣
∣
∣ . . . log

∣
∣
∣η

(d)
r

∣
∣
∣








,

where the entries are given in simple L-form. Given the type j of the solution a similar computation
gives the matrices considered in a quantitative form and hence the determinants R, uk, vk and wk for
1 ≤ k ≤ d.

Next we want to compute the determinants rk (1 ≤ k ≤ r). Since |y| ≥ 2 and

β(j)

y
= L

(

2d−1

∣
∣ydf ′

n(α(j))
∣
∣

)

= L

(
1

2|f ′
n(α(j))|

)

,

by (3) and

log(1 + x) = x − 1

2
x2 + · · · = x + L

(
1

2
x2(1 + x + · · · )

)

= x + L

(
1

2

x2

1 − |x|

)
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for |x| < 1 we obtain

log
∣
∣
∣β(i)

∣
∣
∣ = log |y| + log

∣
∣
∣α(i) − α(j)

∣
∣
∣− β(j)

y
· 1

α(i) − α(j)
+(18)

L




1

4
(

2f ′
n
2(α(j)) · (α(i) − α(j))

2 − f ′
n(α(j)) · (α(i) − α(j))

)





for |y| > | β(j)

αi−αj | . With (18) we can compute the determinants rk (1 ≤ K ≤ r) in simple L-form.

3.3. Computation of the lower bound. The computation of the λ’s can be done by solving the
equations obtained by comparing coefficients. Once the λ’s are computed it is easy to obtain a lower
bound for log |y| by solving the inequality

0.2 <
R

I
≤ u log |y| + v − w · βj

y
+ r

obtained from (7). Since
βj

y appears as coefficient of w, we use the estimate
∣
∣
∣w · βj

y

∣
∣
∣ <

∣
∣
∣

w
2f ′

n(α(j))

∣
∣
∣ to

compute a lower bound for log |y|.

3.4. Calculation of the upper bound. Computing c8 amounts essentially to solve an equation of
the form h(x) := cx− a− log x = 0. This can be done by using one step of Newton’s method starting
at x0 > 1/c, since h′′(x) > 0 and h′(x) > 0 for x > 1/c. Hence applying one step of Newton’s method
will give an upper bound for the root x of h(x) = 0.

Lemma 5. Let a, c ∈ R+, 0 < ε < 1 and x > 0. Then for all

x >

(

a − 1

ε
− log cε

)
1

(1 − ε)c
+

1

cε

we have h(x) = cx − a − log x > 0.

Proof: Apply one step of Newton’s method starting at the point x0 = 1
εc .

�

In the implementation we used the value ε = 1
10 .

3.5. Finding “trivial” lower bounds for |y|. Assume (x, y) is a nontrivial (|y| > 1) solution of
type j of the Thue equation Fn(X, Y ) = ±1 and

α(j) = P (n) +
Q(n)

nk
+ L

( c

nk+1

)

with P ∈ Z[X ], Q ∈ R[X ], deg Q < k, c ∈ R and 0 < k ∈ Z. From (11) we obtain

y

y1
︷ ︸︸ ︷
(

Q(n)

nk
− c

nk+1
− c1

2d

)

< x − P (n)y < y

y2
︷ ︸︸ ︷
(

Q(n)

nk
+

c

nk+1
+

c1

2d

)

.

Since x − P (n)y is an integer we have x − P (n)y = 0, if

(19) |y| < y0 := min

(∣
∣
∣
∣

1

y1

∣
∣
∣
∣
,

∣
∣
∣
∣

1

y2

∣
∣
∣
∣

)

.

Assume x = P (n)y. Substitute P (n)y for x in the Thue equation to obtain

yd · T (n) = ±1,
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where T (n) ∈ Z[X ]. Hence the only possibility for y to satisfy this equation is |y| = 1 and since (x, y)
is nontrivial we obtain y ≥ y0.

Wakabayashi [Wak02a] showed how to obtain further “trivial” bounds, using continued fraction
expansions of α(j) and a generalization of Legendre’s Theorem. For details see [Wak02a], Section 6.

4. An equation of degree 8

As an example for the use of the procedure described above, we consider the parametrized familiy
of Thue equations of degree 8
(20)
Fn(X, Y ) := X8−8nX7Y −28X6Y 2+56nX5Y 3+70X4Y 4−56nX3Y 5−28nX2Y 6+8nXY 7+Y 8 = ±1.

We first want to construct these polynomials in order to understand the structure. Let ε := 1 +
√

2
and let

A =

(
ε −1
1 ε

)

.

Then A is of order 8 in the group PGL2(Q(
√

2)), since

A2 ∼
(

1 −1
1 1

)

, A3 ∼
(

1 −ε
ε 1

)

, A4 ∼
(

0 −1
1 0

)

, A5 ∼
(

−1 −ε
ε −1

)

,

A6 ∼
(

−1 −1
1 −1

)

, A7 ∼
(

−ε −1
1 −ε

)

, A8 ∼
(

1 0
0 1

)

.

We consider the usual action of PGL2(Q(
√

2) on C given by
(

a b
c d

)

z =
az + b

cz + d
.

Let ϑi = Ai−1ϑ, i = 1, . . . , 8. Writing them out, we have

ϑ1 = ϑ, ϑ2 =
εϑ − 1

ϑ + ε
, ϑ3 =

ϑ − 1

ϑ + 1
,

ϑ4 =
ϑ − ε

εϑ + 1
, ϑ5 =

−1

ϑ
, ϑ6 =

−ϑ − ε

εϑ− 1

ϑ7 =
−ϑ − 1

ϑ − 1
, ϑ8 =

−εϑ − 1

ϑ − ε

Since ϑi = −1
ϑi+4

, (i = 1, . . . , 4), we have
∏8

i=1 ϑi = 1. Therefore ϑ is a root of the octic polynomial

P (X) = X8 − a1X
7 + a2X

6 − a3X
5 + a4X

4 − a5X
3 + a6X

2 − a7X + 1,

where a1 =
∑8

i=1 ϑi, a2 =
∑

i<j ϑiϑj etc. Shen [She91] showed that

P (X) = X8 − a1X
7 − 28X6 + 7a1X

5 + 70X4 − 7a1X
3 − 28X2 + a1X + 1(21)

= X8 − 28X6 + 70X4 − 28X2 + 1 − a1X(X2 − 1)(X2 − ε2)(X2 − ε−2).

Since P (∞) > 0 and P (ε) < 0 there is a real root of P (X) = 0. The construction of the polynomial
shows that P (X) = 0 has eight distinct real roots satisfiying

ϑ1 ∈ (ε,∞), ϑ2 ∈ (1, ε), ϑ3 ∈ (ε−1, 1),

ϑ4 ∈ (0, ε−1), ϑ5 ∈ (−ε−1, 0), ϑ6 ∈ (−1,−ε−1),

ϑ7 ∈ (−ε,−1), ϑ8 ∈ (−∞,−ε).

They are all units in the ring of algebraic integers of the field Q(ϑ,
√

2), if a1 is an algebraic integer

of the field Q(
√

2). Shen could prove the following proposition (Proposition 1 in [She91]).
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Proposition 1. The octic polynomial P(X) in equation (21) is irreducible over the field Q for a1 ∈
Z \ {0,±6,±15}.

Let y := 1
2 (ϑ1 + ϑ5), z := 1

4 (ϑ1 + ϑ3 + ϑ5 + ϑ7) and let 8n = a1, (with this substitution we get
fn(X)) then Shen proved:

Proposition 2. (1) The minimal polynomial of y over Q is

X4 − 4nX3 − 6X2 + 4nX + 1,

and hence Q(y) is a “simplest quartic field”.
(2) The minimal polynomial of z over Q is

X2 − 2nX − 1,

and hence Q(z) = Q(
√

n2 + 1).

(3) We have Q(z) = Q(
√

2) if n ∈ S := {a ∈ Z : a + b
√

2 = ε2n+1, n ∈ N}.
(4) For n ∈ S the field Kn := Q(ρ) is a totally real cyclic octic field, whose Galois group

G(Kn|Q) =< σ >' Z/8Z.
(5) The units ρ1, ρ2, ρ3, ρ4, y1, y2 and ε in the ring of algebraic integers oKn

are independent.
(6) The regulator R of Kn has the lower bound

2−6 log ε log6 n.

Since the algebraic data required for solving the family is known for n ∈ S only, we will restrict
our attention to this case. Let ρ be the largest root of fn(X) = 0 and let ρi = σi−1ρ for i = 1, . . . , 8,
where σ ∈ G(Q(ρ)|Q) is determined by

ρ 7→ ερ − 1

ρ + ε
.

Since n ∈ S we have
√

2 ∈ Q(ρ) and hence ε ∈ Q(ρ) and so σ is indeed an automorphism. Note that
ρi = ϑi for i = 1, 2, 5, 6 but

ρ3 = ϑ7, ρ4 = ϑ8, ρ7 = ϑ3, ρ8 = ϑ4.

We have a different ordering since < σ|Q(z) >= G(Q(
√

2)|Q) and hence σ(ε) = −ε−1.

As above let y := 1
2 (ρ1 + ρ5) = 1

2 (ρ − 1/ρ) and z := 1
4 (ρ1 + ρ3 + ρ5 + ρ7) = 1

2 (y − 1/y). Hence we
obtain two equations

ρ2 − 2yρ− 1 = 0 and y2 − 2yz − 1 = 0.

It is easy to compute ρi, (i = 1, . . . , 8) by solving these quadratic equations recursively. As n → ∞
one obtains:

ρ1 ∼ 8n, ρ2 → ε, ρ3 → −1, ρ4 → −ε,

ρ5 → 0, ρ6 → −ε−1, ρ3 → 1, ρ4 → ε−1.

We apply Newton’s method three times starting at xi = limn→∞ ρi(n) for 2 ≤ i ≤ 8 and x1 = 8n. We
obtain:
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ρ1 = 8n +
21

8n
+ L

(
1.05

n3

)

;

ρ2 = ε − ε

2
√

2n
+

ε2

16
√

2n2
− L

(
0.19734

n3

)

;

ρ3 = −1− 1

4n
− 1

32n2
+ L

(
0.083125

n3

)

;

ρ4 = −ε− ε

2
√

2n
− ε2

16
√

2n2
− L

(
0.20734

n3

)

;

ρ5 = − 1

8n
+ L

(
0.036016

n3

)

;

ρ6 = −ε−1 − ε−1

2
√

2n
− ε−2

16
√

2n2
− L

(
0.05267

n3

)

;

ρ7 = 1 − 1

4n
+

1

32n2
+ L

(
0.073125

n3

)

;

ρ8 = ε−1 − ε−1

2
√

2n
+

ε−2

16
√

2n2
− L

(
0.04267

n3

)

.

So all input is collected to use the procedure to solve the family Fn(X, Y ) = ±1. We remark that

the coefficients of the asymptotic expansions of the ρi contain ε and therefore
√

2. This makes the
computation lengthier.

Before applying the procedure we collect some other useful facts. First we prove a lemma about
the type of a solution.

Lemma 6. If (x, y) is a solution of type j = 1, 2, 3, 4, then (y,−x) is a solution of type j + 4 for
n > 1002.

Proof: We have ρi = −1/ρi+4. Using the L-form representation of the ρi we obtain

min |ρ(i) − ρ(j)| > 0.3 for i 6= j and (n > 10).

We further obtain by computing c1 from Section 2

|x/y − ρ(j)| <
1

16n
< 6.25 · 10−5 for (n > 1002).

These two inequalities prove the lemma.

�

Since y(i) = y(i+4) for i = 1, 2, 3, 4 we can choose l and k from the linear form (16) such that
l = k + 4 and we obtain a linear form in only five logarithms. So we get upper bounds

type 1: log |y| < 4.339 · 1027 · log8 n,

type 2: log |y| < 3.136 · 1028 · log8 n,

type 3: log |y| < 4.339 · 1027 · log8 n,
type 4: log |y| < 4.412 · 1027 · log8 n,

Calculating the determinants from Section 2 we get lower bounds
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type 1: log |y| > 4.8 · 10−4 · n · log2 n,

type 2: log |y| > 4.8 · 10−4 · n · log2 n,
type 3: log |y| > 2.4 · 10−4 · n · log2 n,

type 4: log |y| > 4.8 · 10−4 · n · log2 n,

Comparing these bounds we obtain a bound for n0.

Theorem 1. The Thue equation (20) has only trivial solutions for n ≥ n0 and n ∈ S with n0 =
6.71 · 1032.

Looking at the structure of S one obtains

S =

{

a(n) :=
1

2

(

(1 +
√

2)2n−1 + (1 −
√

2)2n−1
)

: n ∈ N \ {0}
}

.

A quick computation shows that there are only 45 elements in S that are smaller than 3.4 · 1034. A
straight forward calculation shows:

Lemma 7. Let x, y, c ∈ Z.

(1) Suppose Fn(x, y) = c, then Fn(x + y,−x + y) = Fn(x − y, x + y) = 16c.
(2) Suppose Fn(x, y) = 16c, then Fn(x+y

2 , −x+y
2 ) = Fn(x−y

2 , x+y
2 ) = c.

One observes that Fn(x, y) = 16c implies that x ≡ y (mod 2) and so x+y
2 and x−y

2 are integers.
All together gives the following corollary.

Corollary 1. Let a(n) := 1
2

(
(1 +

√
2)2n−1 + (1 −

√
2)2n−1

)
and let

Fn(X, Y ) := X8 − 8 a(n)X7Y − 28X6Y 2 + 56 a(n)X5Y 3 + 70X4Y 4

− 56 a(n)X3Y 5 − 28X2Y 6 + 8 a(n)XY 7 + Y 8.

Let n ≥ 45 then the Thue equation Fn(X, Y ) = c with c ∈ {±1,±16} has only the integer solutions

{(±1, 0), (0,±1)} if c = 1,

{±(1, 1),±(1,−1)} if c = 16

and there are no integer solutions for c ∈ {−1,−16}.

5. Further examples

In this section we will reconsider some other examples that have been solved before. In the particular
cases, our results are worse than those obtained by other authors, since they used algebraic relations
to reduce the linear form in logarithms (16) to a linear form in fewer logarithms. They also exploited
the Galois group of the polynomial f(X) = F (X, 1) to get better estimates.

5.1. The equation of Thomas and Mignotte. We will now consider the Thue equation

X3 − (n − 1)X2Y − (n + 2)XY 2 − Y 3 = ±1.

It has been solved for n > 1.365 · 107 by Thomas [Tho90] and for all n by Mignotte [Mig93]. Let α be
the largest root of

fn(x) := Fn(X, 1) = x3 − (n − 1)x2 − (n + 2)x − 1 = 0,

then Q(α)/Q is a cyclic Galois extension and α,−1/(α + 1) are fundamental units of Q(α). This
was proved by Thomas [Tho79]. If (x, y) is a solution of type j, then (y,−(x + y)) is a solution of



14 CLEMENS HEUBERGER, ALAIN TOGBÉ, AND VOLKER ZIEGLER

type (j + 1 mod 3) + 1. Hence it suffices to consider only one type. We treated the type 1. By using
Newton’s method we see that the roots of fn(x) = 0 are

α(1) = n +
2

n
− 1

n2
+ L

(
3

n3

)

,

α(2) = −1− 1

n
+ L

(
3

n3

)

,

α(3) = − 1

n
+

1

n2
+ L

(
3

n3

)

.

Applying the procedure from Section 2 we obtain that there are only trivial solutions for n > n0,
where n0 = 4.13 · 1029. If we take into account the fact that α,−1/(α +1) is a system of fundamental
units, hence I = 1, and that Q(α)/Q is cyclic we get the better result n0 = 2.18 · 1020. The fact that
Q(α)/Q is cyclic leads to a better result since we know the structure of the Galois group, hence we
can compute the quantity c5 more effectively.

5.2. An equation of degree 4. The next example is the Thue equation

Fn(X, Y ) = X4 − nX3Y − X2Y 2 + nXY 3 + Y 4 = ±1.

This equation was first treated by Pethő [Pet91]. He proved that for n > 9.9 · 1027 there are only
trivial solutions. The equation was solved in 1996 for n ≥ 3 by Mignotte, Pethő and Roth. A system
of fundamental units is given by α− 1, α, α + 1, where α is the largest root of fn(X) := Fn(X, 1) = 0.
By Newton’s method we obtain

α(1) = n − 1

n3
+ L

(
1

n4

)

,

α(2) = −1 +
1

2n
− 1

8n2
+

1

2n3
+ L

(
1

n4

)

,

α(3) = 1 +
1

2n
+

1

8n2
+

1

2n3
+ L

(
1

n4

)

,

α(4) = − 1

n
+ L

(
1

n4

)

.

If we use all information we have and use the procedure from Section 2 we obtain that there are only
trivial solutions (x, y) for n > n0, where n0 = 2.6 · 1034 if (x, y) is of type j = 1. The other three cases
j = 2, 3, 4 do not satisfy the Assumption (8). Since α(2) = R2(n) + L(1/n4), α(3) = R3(n) + L(1/n4)
and α(4) = R4(n) + L(1/n4) with R2, R3, R4 ∈ Z(X) we can compute a “trivial” lower bound for |y|
and obtain (j is the type of solution):

(1) log |y| ≥ log n − 1.4 if j = 2,
(2) log |y| ≥ log n − 1.4 if j = 3,
(3) log |y| ≥ log n − 2.1 if j = 4.

Using these “trivial” bounds we obtain

(1) n0 = 1.82 · 1035 if j = 2,
(2) n0 = 8.49 · 1034 if j = 3,
(3) n0 = 6.4 · 1034 if j = 4.

Hence the Thue equation has only trivial solutions for n ≥ n0 with n0 = 1.82 · 1035.
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5.3. An equation of degree 5. We now consider a Thue equation of degree 5:

X(X2 − Y 2)(X2 − n2Y 2) + Y 5 = ±1.

This equation was first solved by Heuberger [Heu98], who proved that there exist only trivial solutions
for n ≥ n0 with n0 = 3.6 · 1019. Using Newton’s method we obtain:

α(1) = n +
1

2n4
+

1

2n6
+ L

(
2

n7

)

,

α(2) = −n +
1

2n4
+

1

2n6
+ L

(
2

n7

)

,

α(3) = 1 − 1

2n2
− 7

8n4
− 5

4n6
+ L

(
2

n7

)

,

α(4) = −1 − 1

2n2
− 1

8n4
+

3

4n6
+ L

(
2

n7

)

,

α(5) =
1

n2
+

1

n6
+ L

(
2

n7

)

.

Heuberger could also prove that α(1), α(1) + 1, α(1) − 1, α(1) − n is a system of fundamental units.
Using the procedure described in Section 2 we get that there are no non trivial solutions for n ≥ n0

with

(1) n0 = 5.09 · 1043 if the solution is of type 1,
(2) n0 = 1.04 · 1044 if the solution is of type 2,
(3) n0 = 4.6 · 1044 if the solution is of type 3,
(4) n0 = 5.1 · 1044 if the solution is of type 4.

For the type 5 the Assumption (8) is not true. But estimating a “trivial” lower bound for |y| we get
log |y| > 2 logn − 2.9. Using this bound we can use the procedure described in Section 2 also in this
case and obtain for solutions of type 5 that n0 = 5.71 · 1044. Hence there are no trivial solutions of
this equation for n ≥ n0 with n0 = 5.71 · 1044.
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