Graphentheoretische Algorithmen SS 2002 3. Übungsblatt

- 21. (a) Bestimmen Sie im Graphen aus Abbildung 1 einen kürzesten Weg vom Startknoten 1 zum Knoten i für alle Knoten $i \neq 1$. Geben Sie einen kürzesten Wegebaum an. Sind im vorliegenden Beispiel die kürzesten Wege bzw. der kürzeste Wegebaum eindeutig?
 - (b) Berechnen Sie für den Graphen aus Abbildung 2 einen kürzesten Weg von 1 nach i für alle Knoten $i \neq 1$, falls ein solcher existiert.
 - c) Bestimmen Sie in den Graphen aus Abbildung 5a und 5b durch Anwendung der Ihnen bekannten Algorithmen einen kürzesten Weg von i nach j für alle Paare i, j von Knoten, falls ein solcher existiert.
- 22. Konstruieren Sie einen gerichteten gewichteten Graphen G = (V, E, w) mit einigen negativen Kantengewichten $w_e \in \mathbb{R}$, $e \in E$, aber ohne negativen Kreise, sodaß für eine Quelle $s \in V$ folgendes gilt:
 - (a) Der in der Vorlesung beschriebene Dijkstra Algorithmus liefert für alle $t \in V \setminus \{s\}$ einen kürzesten (s, t)-Weg in G.
 - (b) Es gibt einen Knoten $t \in V \setminus \{s\}$, sodaß der in der Vorlesung beschriebene Dijkstra Algorithmus keinen kürzesten (s, t)-Weg in G liefert. D.h. der Dijkstra Algorithmus kann das Problem der kürzesten Wege aus s in G nicht korrekt lösen.
- 23. Zeigen Sie mit Hilfe eines Beispiels, daß ein gerichteter minimaler spannender Baum mit Wurzel s in einem gerichteten gewichteten Graphen G = (V, E, w) nicht unbedingt ein Baum der kürzesten Wege mit Startknoten s ist. Umgekehrt, zeigen Sie, daß ein Baum der kürzesten Wege mit Startknoten s in G nicht immer ein gerichteter minimaler spannender Baum mit Wurzel s in G ist.
- 24. Es soll ein Schwertranport von Ort A nach Ort K erfolgen. Abbildung 3 gibt einen Überblick über das vorliegende Straßennetz, wobei das Gewicht einer Kante angibt, wieviel Tonnen Belastung die zugehörige Straße aushält. Ermitteln Sie das zulässige Höchstgewicht des Schwertransportes.
- 25. Sei G = (V, E, w) ein gerichteter gewichteter Graph mit Kantengewichten $w_e \in E$ und s eine Quelle in G. Entscheiden Sie welche der folgenden Aussagen falsch und welche richtig sind. Beweisen Sie die richtigen Aussagen und widerlegen Sie die falschen mit Hilfe von Gegenbeispielen.
 - (a) Wenn die Kantengewichte c_e paarweise verschieden sind $(\forall e_1, e_2 \in E \mid e_1 \neq e_2 \Rightarrow w_{e_1} \neq w_{e_2})$, ist der kürzeste Wegebaum eindeutig.
 - (b) Sei $k \in \mathbb{N}$ eine natürliche Zahl und sei $\tilde{w}_e = w_e + k$, für alle $e \in E$. Dann gilt: Für je zwei Knoten $s, t \in V$ ist die Differenz $\tilde{L}_{s,t} L_{s,t}$ ein Vielfaches von k, wobei $\tilde{L}_{s,t}$ bzw. $L_{s,t}$ die Länge eines kürzesten (s,t)-Weges in $\tilde{G} = (V, E, \tilde{w})$ bzw. in G = (V, E, w) bezeichnet.
 - (c) Sei $k \in \mathbb{N}$ eine natürliche Zahl und sei $\tilde{w}_e = w_e k$, für alle $e \in E$. Dann gilt: Für je zwei Knoten $s, t \in V$ ist die Differenz $L_{s,t} \tilde{L}_{s,t}$ ein Vielfaches von k, wobei $\tilde{L}_{s,t}$ bzw. $L_{s,t}$ die Länge eines kürzesten (s,t)-Weges in $\tilde{G} = (V, E, \tilde{w})$ bzw. in G = (V, E, w) in bezeichnet.
 - (d) Der in der Vorlesung beschriebene Dijkstra Algorithmus findet für jeden Knoten $t \in V \setminus \{s\}$ einen kürzesten (s,t)-Weg mit minimaler Anzahl von Kanten in G.
- 26. **Die unerläßlichste Kante**. Gegeben sei ein gewichteter gerichteter Graph G = (V, E, w) mit nichtnegativen Kantengewichten $w_e, e \in E$, sowie eine Quelle $s \in V$ und eine Senke $t \in V$. Eine Kante $e \in G$ wird unerläßlich gennant, wenn die Länge eines kürzesten (s,t)-Weges in $G \setminus \{e\}$ größer als die Länge eines kürzesten (s,t)-Weges in G ist. Eine unerläßlichste Kante in G ist eine unerläßliche Kante e, sodaß die Differenz zwischen der Länge eines kürzesten (s,t)-Weges in $G \setminus \{e\}$ und der Länge eines kürzesten (s,t)-Weges in G maximal ist. Angenommen es gibt eine unerläßliche Kante in G.

- (a) Beweisen oder widerlegen Sie folgende Aussagen:
 - (1.) Eine unerläßlichste Kante e^* ist eine Kante mit maximalem Gewicht: $e^* \in \operatorname{argmax}\{w_e : e \in E\}$.
 - (2.) Eine unerläßlichste Kante e ist eine Kante mit maximalem Gewicht in einem beliebigen kürzesten (s,t)-Weg in G.
 - (3.) Eine Kante e, die in keinem kürzesten (s,t)-Weg in G enthalten ist, kann nicht eine unerläßlichste Kante sein.
 - (4.) Es kann mehrere unerläßlichste Kanten geben.
- (b) Entwerfen Sie einen Algorithmus zur Bestimmung einer unerläßlichsten Kante in G.
- 27. Das kürzeste Wegeproblem mit Nebenbedingungen. Gegeben sei ein gerichteter gewichteter Graph G = (V, E, w) mit Kantengewichten w_e und ganzzahligen positiven Durchquerzeiten τ_e , für alle $e \in E$, sowie eine Quelle $s \in V$. Gesucht ist ein kürzester gerichteter (s, t)-Wege für jedes $t \in V \setminus \{s\}$ in G, unter die Nebenbedingung, daß die Durchquerzetien der Wege eine gegebene Konstante T nicht überschreiten. Sei $d_j(\tau)$ die Länge eines kürzesten gerichteten (s, j)-Weges in G dessen Durchquerzeit nicht größer als τ ist. Sei $d_j(\tau) := \infty$ für $\tau < 0$. Beweisen Sie die Korrektheit folgender Gleichungen:

$$d_s(0)=0, \qquad d_j(au)=\min\left\{d_j(au-1), \min_k\{d_k(au- au_{kj})+w_{kj}\}
ight\}$$

Entwerfen Sie einen Algorithmus für das kürzeste Wegeproblem mit Nebenbedingungen.

