Game Theory WS 2013/2014 8. Exercise Sheet

26. Which of the following games, where Player I is the row player and Player II is the column player, are strategically equivalent to two-player zero-sum games? For each game that is strategically equivalent to a two-player zero-sum game, write explicitly the positive affine transformation which proves your answer.

	\mathbf{L}	R		\mathbf{L}	R	
Т	11,2	5,4	T	2,7	4,5	
В	-7,8	17,0	В	6,3	-3,12	
Game A			·	Game B		

27. This exercise presents the example of a strategic form game with an infinite set of players that has no equilibrium in mixed strategies. Let $G = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$ be a game in strategic form in which the set of players is the set of natural number $N = \mathbb{N}$, each player $i \in \mathbb{N}$ has two pure strategies $S_i = \{0, 1\}$, and player i's payoff function is given as

$$u_i(s_1, s_2, \dots, s_n, \dots) = \begin{cases} s_i & \text{if } \sum_{j \in \mathbb{N}} s_j < \infty \\ -s_i & \text{if } \sum_{j \in \mathbb{N}} s_j = \infty \end{cases}$$

•

- (a) Prove that this game has no equilibrium in pure strategies.
- (b) Prove that this game has no equilibrium in mixed strategies by using Kolmogorov's 0 1 law formulated below. (You don't need to prove Kolmogorov's law!)

Let X_i be a sequence of independent random numbers defined over the probability space (Ω, \mathcal{F}, p) . An event A is called a tail event, iff it depends only on $(X_i)_{i\geq n}$ for each $n \in \mathbb{N}$. In other words, for any $n \in \mathbb{N}$, in order to ascertain whether $\omega \in A$, it suffices to know the value of $(X_i(\omega))_{i\geq n}$, which means that we can ignore a finite number of the initial variables X_1, X_2, \ldots, X_n , for any n. Kolmogorov's 0-1 law says that the probability of a tail event is either 0 or 1.