Game Theory WS 2013/2014

8. Exercise Sheet

26. Which of the following games, where Player I is the row player and Player II is the column player, are strategically equivalent to two-player zero-sum games? For each game that is strategically equivalent to a two-player zero-sum game, write explicitly the positive affine transformation which proves your answer.

	L	R
	2,7	4,5
	6,3	$-3,12$
	Game B	

27. This exercise presents the example of a strategic form game with an infinite set of players that has no equilibrium in mixed strategies. Let $G=\left(N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ be a game in strategic form in which the set of players is the set of natural number $N=\mathbb{N}$, each player $i \in \mathbb{N}$ has two pure strategies $S_{i}=\{0,1\}$, and player i's payoff function is given as

$$
u_{i}\left(s_{1}, s_{2}, \ldots, s_{n}, \ldots\right)=\left\{\begin{array}{ll}
s_{i} & \text { if } \sum_{j \in \mathbb{N}} s_{j}<\infty \\
-s_{i} & \text { if } \sum_{j \in \mathbb{N}} s_{j}=\infty
\end{array} .\right.
$$

(a) Prove that this game has no equilibrium in pure strategies.
(b) Prove that this game has no equilibrium in mixed strategies by using Kolmogorov's $0-1$ law formulated below. (You don't need to prove Kolmogorov's law!)

Let X_{i} be a sequence of independent random numbers defined over the probability space (Ω, \mathcal{F}, p). An event A is called a tail event, iff it depends only on $\left(X_{i}\right)_{i \geq n}$ for each $n \in \mathbb{N}$. In other words, for any $n \in \mathbb{N}$, in order to ascertain whether $\omega \in A$, it suffices to know the value of $\left(X_{i}(\omega)\right)_{i \geq n}$, which means that we can ignore a finite number of the initial variables $X_{1}, X_{2}, \ldots, X_{n}$, for any n. Kolmogorov's $0-1$ law says that the probability of a tail event is either 0 or 1 .

