Game Theory WS 2013/2014

6. Exercise Sheet

- 21. Consider a mixed extension of a strategic form game. A mixed strategy σ_i of player *i* is called *weakly* dominated if there exists a mixed strategy $\hat{\sigma}_i$ of player *i* satisfying
 - (i) for each vector of pure strategies s_{-i} of the other players, $s_{-i} \in S_{-i}$, the inequality $U_i(\sigma_i, s_{-i}) \leq U_i(\hat{\sigma}_i, s_{-i})$ holds, and
 - (ii) there exists a vector of pure t_i of strategies of the other players, $t_{-i} \in S_{-i}$, such that $U_i(\sigma_i, t_{-i}) < U_i(\hat{\sigma}_i, t_{-i})$ holds.
 - (a) Show that the set of weakly dominated mixed strategies is a convex set.
 - (b) Suppose that player i has a pure strategy s_i which is chosen with positive probability in each of his maximin strategies. Prove that s_i is not weakly dominated by any other strategy (pure or mixed).
 - (c) Suppose that player *i* has a pure strategy s_i which is chosen with positive probability in one of his maximin strategies. Is s_i chosen with positive probability in each of player i's maximin strategies? Prove this claim or provide a counterexample.
- 22. Consider the following two-player game where the row player is Player I and the column player is Player II.

	L	\mathbf{C}	R
Т	6,2	$0,\!6$	4,4
Μ	$2,\!12$	4,3	2,5
В	$0,\!6$	$10,\!0$	2,2

- (a) Verify that no pure strategy is dominated by some other pure strategy in this game.
- (b) Verify that strategy M of Player I is strictly dominated by some mixed strategy.
- (c) Reduce the game by eliminating M and show that in the reduced game strategy R of Player II is strictly dominated by some mixed strategy.
- (d) Reduce the game again by eliminating strategy R. Show that the resulting game has no pure strategy equilibria and determine all its mixed strategy equilibria.
- (e) Determine the mixed strategy equilibria of the original game.
- 23. A strategic form game $G = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$ is called symmetric if (a) each player has the same set of strategies, $S_i = S_j$, for each $i, j \in N$, and (b) the payoff functions satisfy

$$u_i(s_1, s_2, \dots, s_n) = u_j(s_1, \dots, s_{i-1}, s_j, s_{i+1}, \dots, s_{j-1}, s_i, s_{j+1}, \dots, s_n)$$

for any vector of pure strategies $(s_1, s_2, ..., s_n) \in S$ and for each pair of players $i, j \in N$ with i < j. Prove that in every symmetric game there exists a symmetric equilibrium in mixed strategies, i.e. an equilibrium $\sigma = (\sigma_i)_{i \in N}$ satisfying $\sigma_i = \sigma_j$ for each $i, j \in N$.