6. Exercise Sheet

21. Consider a mixed extension of a strategic form game. A mixed strategy σ_{i} of player i is called weakly dominated if there exists a mixed strategy $\hat{\sigma}_{i}$ of player i satisfying
(i) for each vector of pure strategies s_{-i} of the other players, $s_{-i} \in S_{-i}$, the inequality $U_{i}\left(\sigma_{i}, s_{-i}\right) \leq U_{i}\left(\hat{\sigma}_{i}, s_{-i}\right)$ holds, and
(ii) there exists a vector of pure t_{i} of strategies of the other players, $t_{-i} \in S_{-i}$, such that $U_{i}\left(\sigma_{i}, t_{-i}\right)<U_{i}\left(\hat{\sigma}_{i}, t_{-i}\right)$ holds.
(a) Show that the set of weakly dominated mixed strategies is a convex set.
(b) Suppose that player i has a pure strategy s_{i} which is chosen with positive probability in each of his maximin strategies. Prove that s_{i} is not weakly dominated by any other strategy (pure or mixed).
(c) Suppose that player i has a pure strategy s_{i} which is chosen with positive probability in one of his maximin strategies. Is s_{i} chosen with positive probability in each of player i's maximin strategies? Prove this claim or provide a counterexample.
22. Consider the following two-player game where the row player is Player I and the column player is Player II.

	L	C	R
T	6,2	0,6	4,4
M	2,12	4,3	2,5
B	0,6	10,0	2,2

(a) Verify that no pure strategy is dominated by some other pure strategy in this game.
(b) Verify that strategy M of Player I is strictly dominated by some mixed strategy.
(c) Reduce the game by eliminating M and show that in the reduced game strategy R of Player II is strictly dominated by some mixed strategy.
(d) Reduce the game again by eliminating strategy R. Show that the resulting game has no pure strategy equilibria and determine all its mixed strategy equilibria.
(e) Determine the mixed strategy equilibria of the original game.
23. A strategic form game $G=\left(N,\left(S_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$ is called symmetric if (a) each player has the same set of stratgies, $S_{i}=S_{j}$, for each $i, j \in N$, and (b) the payoff functions satisfy

$$
u_{i}\left(s_{1}, s_{2}, \ldots, s_{n}\right)=u_{j}\left(s_{1}, \ldots, s_{i-1}, s_{j}, s_{i+1}, \ldots, s_{j-1}, s_{i}, s_{j+1}, \ldots, s_{n}\right)
$$

for any vector of pure strategies $\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in S$ and for each pair of players $i, j \in N$ with $i<j$. Prove that in every symmetric game there exists a symmetric equilibrium in mixed strategies, i.e. an equilibrium $\sigma=\left(\sigma_{i}\right)_{i \in N}$ satisfying $\sigma_{i}=\sigma_{j}$ for each $i, j \in N$.

