POT: Schätzer für den Tail und das Quantil der Exzess-Verteilung

Seien X_1, \ldots, X_n i.i.d. ZV mit Verteilungsfunktion $F \in MDA(H_{\gamma})$ für $\gamma \in \mathbb{R}$.

ullet Wähle eine hohe Schwelle u (unter Verwendung von geeigneten stat. Verfahren) und berechne

$$N_u = \# \{i \in \{1, 2, \dots, n\}: X_i > u\}$$

• Sei $Y_1, Y_2, ..., Y_{N_u}$ eine Stichprobe von Exzess-Beobachtungen. Bestimme $\widehat{\beta}$ und $\widehat{\gamma}$, sodass folgendes gilt:

$$ar{F}_u(y)pprox ar{G}_{\widehat{\gamma},0,\widehat{eta(u)}}(y),$$

wobei $\bar{F}_u(y) = P(X - u > y | X > u)$

 Kombiniere die obigen zwei Schritte um folgende Schätzer zu berechnen:

$$\widehat{F}(\widehat{u+y}) = \frac{N_u}{n} \left(1 + \widehat{\gamma} \frac{y}{\widehat{\beta}} \right)^{-1/\widehat{\gamma}} \tag{1}$$

$$\widehat{q}_p = u + \frac{\widehat{\beta}}{\widehat{\gamma}} \left(\left(\frac{n}{N_u} (1 - p) \right)^{-\widehat{\gamma}} - 1 \right) \tag{2}$$

Wie wird eine hohe Schwelle u (POT Methode) gewählt?

- u zu groß: Wenige Beobachtungen für die Schätzung von $\widehat{\beta}$ und $\widehat{\gamma}.$
- ullet u zu klein: die Approximation $\bar{F}_u(y) pprox \bar{G}_{\hat{\gamma},\hat{\beta}(u)}(u)$ ist nicht gut genug.

Grundidee: Inspektion des Plots der empirischen durchschnittlichen Exzess-Funktion und Auswahl einer Schwelle u_0 , sodass die empirische durchschnittliche Exzess-Funktion für $u > u_0$ annähernd linear ist.

Begründung: die Durchschnittliche Exzess-Funktion der $GPD_{\gamma,0,\beta}$ ist linear!

Die empirische durchschnittliche Exzess-Funktion

Seien X_1, X_2, \ldots, X_n i.i.d ZV.

Sei $N_u = \#\{i: 1 \le i \le n, X_i > u\}$ die Anzahl der Überschreitung von u durch X_i

Die empirische durchschnittliche Exzess-Funktion $e_n(u)$:

$$e_n(u) = \frac{1}{N_u} \sum_{i=1}^n (X_i - u) I\{X_i > u\}$$

Der Plot der durchschnittlichen Exzess-Funktion: $(X_{k,n}, e_n(X_{k,n}))$ für k = 1, 2, ..., n-1.

Wenn dieser Plot annähernd linear mit einem positiven Gradienten ist, so wird angenommen, dass die Verteilung einen heavy-tailed Pareto-ähnlichen Tail hat.

Schätzung der Parameter γ und β

Sei u eine gegebene Schwelle und $Y_1, Y_2, ..., Y_{N_u}$ Beobachtungen der Überschüsse $X_i > u$, $1 \le i \le n$.

Die Log-Likelihood Funktion:

$$\ln L(\gamma,\beta,Y_1,\ldots,Y_{N_u}) = -N_u \ln \beta - \left(\frac{1}{\gamma} + 1\right) \sum_{i=1}^{N_u} \ln \left(1 + \frac{\gamma}{\beta} Y_i\right)$$

wobei $Y_i \geq 0$ für $\gamma > 0$ und $0 \leq Y_i \leq -\beta/\gamma$ für $\gamma < 0$.

 $L(\gamma, \beta, Y_1, \dots, Y_{N_u})$ ist die bedingte Wahrscheinlichkeit, dass $\bar{F}_u(y) \approx \bar{G}_{\gamma,0,\beta}(y)$ unter der Bedingung, dass die Beobachtungen der Überschüsse Y_1,Y_2,\dots,Y_{N_u} sind.

Für die Ermittlung der Likelihood Funktion siehe Daley, Veve-Jones (2003) and Coles (2001).

Als Schätzer $\hat{\gamma}$ und $\hat{\beta}$ werden jene Werte von γ bzw. β verwendet, die die log-Likelihood Funktion maximieren (ML-Schätzer)

Die Methode funktioniert gut für $\gamma > -1/2$. Die ML-Schätzer sind in diesem Fall normal verteilt:

$$(\widehat{\gamma}-\gamma,rac{\widehat{eta}}{eta}-1)\sim N(0,\Sigma^{-1}/N_u)$$
 wobei $\Sigma^{-1}=\left(egin{array}{cc}1+\gamma&-1\-1&2\end{array}
ight).$

Um die Unsicherheit über die einigermaßen willkürliche Auswahl von u zu reduzieren, überprüft man wie die ML-Schätzer in Abhängigkeit von u variieren.

Weiters wird der Schätzer

$$\widehat{F(u+y)} = \frac{N_u}{n} \left(1 + \widehat{\gamma} \frac{y}{\widehat{\beta}} \right)^{-1/\widehat{\gamma}}$$

grafisch dargestellt und inspiziert.

Berechnung von Risikomaßen VaR und CVaR mit Hilfe der POT Methode

Seien X_1, X_2, \ldots, X_n Beobachtungen von i.i.d. ZVen mit unbekannter Verteilungsfunktion F. Direkt aus der POT Methode erhält man folgende Schätzer für die Randverteilung und das Quantil $q_p = VaR_p(F)$ von F

$$\widehat{F(u+y)} = \frac{N_u}{n} \left(1 + \widehat{\gamma} \frac{y}{\widehat{\beta}} \right)^{-1/\widehat{\gamma}}$$

$$\widehat{q}_p = u + \frac{\widehat{\beta}}{\widehat{\gamma}} \left(\left(\frac{n}{N_u} (1-p) \right)^{-\widehat{\gamma}} - 1 \right)$$

Für $0 < \hat{\gamma} < 1$, zeigen wir, dass $\widehat{CVaR_p}(F) = \widehat{q_p} + \frac{\widehat{\beta} + \widehat{\gamma}(\widehat{q_p} - u)}{1 - \widehat{\gamma}}$ ein Schätzer von $CVaR_p(F)$ ist.

Der Beweis erfolgt mit Hilfe der folgenden 3 Schritte:

(1) Sei $Z_1 \sim F$ eine ZV mit Verteilungsfunktion F und seien $u \geq u_0 > 0$ zwei Schwellwerte. Es gilt $e_{Z_1}(u) = e_{Z_2}(u - u_0)$ wobei $Z_2 \stackrel{d}{=} (Z_1 - u_0)|(Z_1 > u_0)$ und e_{Z_1} und e_{Z_1} die durchschnittlichen Exzessfunktionen von Z_1 bzw. Z_2 sind.