Operations Research
 Winter term 2015/2016

7 th work sheet (multicriteria optimisation)
36. Let $X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: \mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0, \mathrm{x}_{1}+\mathrm{x}_{2} \leq 100,2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 150\right\}, f_{1}\left(x_{1}, x_{2}\right)=-6 x_{1}-4 x_{2}$ and $f_{2}\left(x_{1}, x_{2}\right)=-x_{1}$. Solve the ϵ-constrained problem $P_{1}(\epsilon)$ for $\epsilon=0$ cf. lecture for the definition of ϵ-constrained problems). Use the method of Benson to check whether the optimal solution x^{*} of $P_{1}(0)$ is Pareto-optimal to $\left(X, f, \mathbb{R}^{2}\right) / \mathrm{id} /\left(\mathbb{R}^{2},<\right)$ or not.
37. Consider $X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{x}_{2}-1\right)^{2} \leq 1\right\}+\mathbb{R}_{+}^{2}$ and $f: X \rightarrow \mathbb{R}^{2}$ with $f(x)=x$, $\forall x \in X$. Let $\left(\epsilon_{1}, \epsilon_{2}\right) \in \mathbb{R}_{+}^{2}$ with $\epsilon_{1}>1$ and $\left(\mu_{1}, \mu_{2}\right) \in \mathbb{R}_{+}^{2}$ with $\mu_{1}>0$. Solve the problem $P_{2}(\epsilon, \mu)$ (cf. lecture). Show that its optimal solution is a weakly Pareto optimal solution but not a Pareto optimal solution to $\left(X, f, \mathbb{R}^{2}\right) / \mathrm{id} /\left(\mathbb{R}^{2}, \leq\right)$, and that this holds for all $\epsilon_{1}>1$ and for all $\mu_{1}>0$.
38. Consider $X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{x}_{2}-1\right)^{2} \leq 1\right\}$ and $f: X \rightarrow \mathbb{R}^{2}$ with $f(x)=x, \forall x \in X$. Solve the problem $P_{2}(\epsilon, \mu)$ (cf. lecture) with $\epsilon=0$ in order to illustrate that there exist (non-proper) Pareto optimal solutions to $\left(X, f, \mathbb{R}^{2}\right) / \mathrm{id} /\left(\mathbb{R}^{2}, \leq\right)$ which can not be obtained as optimal solutions of $P_{2}(\epsilon, \mu)$ for some $0 \leq \mu<\infty$. Could this Pareto optimal solution of $\left(X, f, \mathbb{R}^{2}\right) / \mathrm{id} /\left(\mathbb{R}^{2}, \leq\right)$ be obtained as an optimal solution of $P_{2}(\epsilon, \mu)$ with $0 \leq \mu<\infty$ for some other value of $\epsilon \neq 0$?
39. Consider $\left(X, f, \mathbb{R}^{\mathrm{n}}\right) / \mathrm{id} /\left(\mathbb{R}^{\mathrm{Q}}, \leq\right)$ and assume $0<\min _{x \in X} f_{k}(x)$, for all $k=1,2, \ldots, Q$. Prove that $x \in X_{\mathrm{wPar}}$ if and only if x is an optimal solution of $\min _{x \in X} \max _{k=1,2, \ldots, Q} \lambda_{k} f_{k}(x)$, for some $\lambda \in$ $\operatorname{int}\left(\mathbb{R}_{+}^{Q}\right)$.
40. Consider finding a compromise solution by maximizing the distance to the nadir point. Let $\|\cdot\|$ be a norm. Show that an optimal solution of the problem $\max \left\{\left\|f(x)-y^{N}\right\|: x \in X\right\}$ is weakly Pareto optimal to $\left(X, f, \mathbb{R}^{\mathrm{n}}\right) / \mathrm{id} /\left(\mathbb{R}^{\mathrm{Q}}, \leq\right)$. Give a condition under which an optimal solution of the above maximization problem is guaranted to be a Pareto optimal solution of $\left(X, f, \mathbb{R}^{\mathrm{n}}\right) / \mathrm{id} /\left(\mathbb{R}^{\mathrm{Q}}, \leq\right)$.
41. Solve the problem in example 36 by means of the compromise programming approach. Use $\lambda=$ $(1 / 2,1 / 2)$ and identify the solution of $C P_{p}^{w}$ für $p=1,2, \infty$.
42. Let $Y=\left\{y=\left(y_{1}, y_{2}\right) \in \mathbb{R}_{+}^{2}: \mathrm{y}_{1}^{2}+\mathrm{y}_{2}^{2} \geq 1\right\}$. Show the existence of a parameter $p, 1<p<\infty$, such that the following equality holds:

$$
Y_{\mathrm{eff}}=\cup_{w \in \Lambda^{0}} A(\lambda, p, Y)
$$

Use the ideal point y^{I} or the utopic point y^{U} in the definition of $A(w, p, Y)$ and N_{p}^{λ}.
43. Consider $\left(X, f, \mathbb{R}^{\mathrm{n}}\right) / \mathrm{id} /\left(\mathbb{R}^{\mathrm{Q}}, \leq\right)$ and assume that $\hat{x} \in X_{\mathrm{p} \text {-Par. }}$. Show that there exist $\epsilon \in \mathbb{R}^{Q}, \mu \in \mathbb{R}_{+}^{Q}$ and $\hat{s} \in \mathbb{R}_{+}^{Q}$, such that (\hat{x}, \hat{s}) is an optimal solution to $P_{j}(\epsilon, \mu), \forall j \in\{1,2, \ldots, Q\}$. Thus proper Pareto optimal solution can be obtained as optimal solutions of the elastic constrained problem $P_{j}(\epsilon, \mu)$ with finite penalties $\mu_{j}, j \in\{1,2, \ldots, Q\}$.

