Operations Research Winter term 2015/2016

7th work sheet (multicriteria optimisation)

- 36. Let $X = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0, x_2 \ge 0, x_1 + x_2 \le 100, 2x_1 + x_2 \le 150\}$, $f_1(x_1, x_2) = -6x_1 4x_2$ and $f_2(x_1, x_2) = -x_1$. Solve the ϵ -constrained problem $P_1(\epsilon)$ for $\epsilon = 0$ cf. lecture for the definition of ϵ -constrained problems). Use the method of Benson to check whether the optimal solution x^* of $P_1(0)$ is Pareto-optimal to $(X, f, \mathbb{R}^2)/\mathrm{id}/(\mathbb{R}^2, <)$ or not.
- 37. Consider $X = \{(x_1, x_2) \in \mathbb{R}^2 : (x_1 1)^2 + (x_2 1)^2 \leq 1\} + \mathbb{R}^2_+$ and $f: X \to \mathbb{R}^2$ with f(x) = x, $\forall x \in X$. Let $(\epsilon_1, \epsilon_2) \in \mathbb{R}^2_+$ with $\epsilon_1 > 1$ and $(\mu_1, \mu_2) \in \mathbb{R}^2_+$ with $\mu_1 > 0$. Solve the problem $P_2(\epsilon, \mu)$ (cf. lecture). Show that its optimal solution is a weakly Pareto optimal solution but not a Pareto optimal solution to $(X, f, \mathbb{R}^2)/\mathrm{id}/(\mathbb{R}^2, \leq)$, and that this holds for all $\epsilon_1 > 1$ and for all $\mu_1 > 0$.
- 38. Consider $X = \{(x_1, x_2) \in \mathbb{R}^2 : (x_1 1)^2 + (x_2 1)^2 \leq 1\}$ and $f: X \to \mathbb{R}^2$ with $f(x) = x, \forall x \in X$. Solve the problem $P_2(\epsilon, \mu)$ (cf. lecture) with $\epsilon = 0$ in order to illustrate that there exist (non-proper) Pareto optimal solutions to $(X, f, \mathbb{R}^2)/\mathrm{id}/(\mathbb{R}^2, \leq)$ which can not be obtained as optimal solutions of $P_2(\epsilon, \mu)$ for some $0 \leq \mu < \infty$. Could this Pareto optimal solution of $(X, f, \mathbb{R}^2)/\mathrm{id}/(\mathbb{R}^2, \leq)$ be obtained as an optimal solution of $P_2(\epsilon, \mu)$ with $0 \leq \mu < \infty$ for some other value of $\epsilon \neq 0$?
- 39. Consider $(X, f, \mathbb{R}^n)/\mathrm{id}/(\mathbb{R}^Q, \leq)$ and assume $0 < \min_{x \in X} f_k(x)$, for all $k = 1, 2, \ldots, Q$. Prove that $x \in X_{\mathrm{wPar}}$ if and only if x is an optimal solution of $\min_{x \in X} \max_{k=1,2,\ldots,Q} \lambda_k f_k(x)$, for some $\lambda \in \mathrm{int}(\mathbb{R}^Q_+)$.
- 40. Consider finding a compromise solution by maximizing the distance to the nadir point. Let $|| \cdot ||$ be a norm. Show that an optimal solution of the problem $\max\{||f(x) - y^N||: x \in X\}$ is weakly Pareto optimal to $(X, f, \mathbb{R}^n)/\mathrm{id}/(\mathbb{R}^Q, \leq)$. Give a condition under which an optimal solution of the above maximization problem is guaranted to be a Pareto optimal solution of $(X, f, \mathbb{R}^n)/\mathrm{id}/(\mathbb{R}^Q, \leq)$.
- 41. Solve the problem in example 36 by means of the compromise programming approach. Use $\lambda = (1/2, 1/2)$ and identify the solution of CP_p^w für $p = 1, 2, \infty$.
- 42. Let $Y = \{y = (y_1, y_2) \in \mathbb{R}^2_+ : y_1^2 + y_2^2 \ge 1\}$. Show the existence of a parameter p, 1 , such that the following equality holds:

$$Y_{\text{eff}} = \cup_{w \in \Lambda^0} A(\lambda, p, Y).$$

Use the ideal point y^I or the utopic point y^U in the definition of A(w, p, Y) and N_p^{λ} .

43. Consider $(X, f, \mathbb{R}^n)/\mathrm{id}/(\mathbb{R}^Q, \leq)$ and assume that $\hat{x} \in X_{p-\mathrm{Par}}$. Show that there exist $\epsilon \in \mathbb{R}^Q$, $\mu \in \mathbb{R}^Q_+$ and $\hat{s} \in \mathbb{R}^Q_+$, such that (\hat{x}, \hat{s}) is an optimal solution to $P_j(\epsilon, \mu), \forall j \in \{1, 2, \dots, Q\}$. Thus proper Pareto optimal solution can be obtained as optimal solutions of the elastic constrained problem $P_j(\epsilon, \mu)$ with finite penalties $\mu_j, j \in \{1, 2, \dots, Q\}$.