5. Exercise sheet - Stochastic inventory models

26. The stochastic one-period inventory model is extended as follows. There are two products in inventory. They can serve as a substitute for each-other, i.e. Product 1 (Product 2) can be used to fulfill the demand on Product 2 (Product 1), in the case that the demand cannot be fulfilled by the inventory of the specific product. Assume for simplicity that the inventory level of each product equals 0 at the beginning of the planning horizon. Moreover assume that both the fixed ordering costs and the costs of missing demand equal 0 . Let c_{i} be the variable ordering cost per unit of product i and let s_{i} be the profit realized by fulfilling the demand of one unit of product $i, i=1,2$. Hence the fulfillment of a demand for z units of product i results in a net profit of $z\left(s_{i}-c_{i}\right), i=1,2$, for the inventory holder. Let X_{i} be a random variable representing the demand on product i and let f_{i} be the probability density function of $X_{i}, i=1,2$. Further let $a_{i} \in(0,100)$ be the percentage of customers which would eventually accept a substitute for their demand. Denote by $G\left(u_{1}, u_{2}\right)$ the (random) profit of the inventory holder if he orders u_{i} units of product $i, i=1,2$. The goal is to determine the amounts u_{i} of products to be ordered, $i=1,2$, such that the expected profit $E\left(G\left(u_{1}, u_{2}\right)\right)$ is maximized. Derive a formula for $E\left(G\left(u_{1}, u_{2}\right)\right)$.
27. Consider a three-period stochastic stationary inventory model as the one dealt with in the lecture (version A and B). Let the random demand R be uniformly distributed over the interval $[0,10]$. The other input parameters of the problem are as follows: $c=1$ Euro per product unit, $K=5$ Euro, $h=3$ Euro per product unit and period, $p=4$ Euro per product unit and period, and $\alpha=0.9$. Determine an optimal ordering policy $z_{j}^{*}(x), x \in \mathbb{R}, j=1,2,3$, and the corresponding costs, for each of the models A and B (cf. lecture). Determine also the lower and upper bounds for the ordering point and the ordering level in every period.
28. Consider a stochastic stationary inventory model with an infinite number of periods as described in the lecture. Let the random demand R be uniformly distributed over the interval $[0,10]$. The other input parameters of the problem are as follows: $c=1$ Euro per product unit, $K=0$ Euro, $h=3$ Euro per product unit and period, $p=4$ Euro per product unit and period, and $\alpha=0.9$. Determine an optimal ordering policy $z^{*}(x), x \in \mathbb{R}$ and the corresponding costs.
