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Abstract. In intensity-modulated radiation therapy (IMRT) not only is the shape of the beam controlled,
but combinations of open and closed multileaf collimators modulate the intensity as well. In this paper, we
offer a mixed integer programming approach which allows optimization over beamlet fluence weights as
well as beam and couch angles. Computational strategies, including a constraint and column generator, a
specialized set-based branching scheme, a geometric heuristic procedure, and the use of disjunctive cuts,
are described. Our algorithmic design thus far has been motivated by clinical cases. Numerical tests on real
patient cases reveal that good treatment plans are returned within 30 minutes. The MIP plans consistently
provide superior tumor coverage and conformity, as well as dose homogeneity within the tumor region
while maintaining a low irradiation to important critical and normal tissues.
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1. Introduction

Intensity-modulated radiation therapy (IMRT) is an important recent advance in radia-
tion therapy. In conventional radiotherapy treatment, the planning process consists of
determining a set of external beams that meet, as best as possible, the clinical dose dis-
tribution criteria. In many cases, significant compromises to critical structure function
have to be made to enable a tumoricidal dose to be delivered to the targets. In IMRT,
the radiation fluence is varied across the beam, which allows a higher degree of con-
formation to the tumor than previously possible and allows concave isodose profiles to
be generated. Specifically, not only is the shape of the beam controlled, but combina-
tions of open and closed multileaf collimators modulate the intensity as well. For this
reason, IMRT provides improved delivery power over conventional treatment. Indeed,
it provides an unprecedented capability to dynamically vary the dose to accommodate
the shape of the tumor from different angles, and to spare normal tissues and organs-
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at-risk (OAR) that may be potentially harmed during treatment. However, due to the
complexity of the beam intensity profile associated with IMRT, a computer-driven op-
timization algorithm must be used to determine the beam fluences (intensity maps) that
provide the best compromise between target underdosing, target overdosing and critical
structure overdosing. In this paper, we offer a mixed integer programming approach for
determining an optimal configuration of intensity maps and beam angles for IMRT.

In section 2 we describe the treatment planning problem for IMRT, discuss relevant
issues on dose calculation, and specify several mixed integer programming treatment
planning models. Computational strategies for plan optimization are presented in sec-
tion 3. Specifically, we discuss the implementation of a constraint and column generator,
a specialized set-based branching scheme, a geometric heuristic procedure, and the use
of disjunctive cuts. Our algorithmic design thus far has been motivated by clinical cases.
Numerical results are analyzed in section 4. In section 5 we present some clinical inter-
pretation of the solutions obtained via the MIP approach. This is followed by concluding
remarks in section 6.

2. Intensity-modulated radiation therapy and treatment planning optimization

2.1. Background

Linear accelerators (LINACs) are common beam delivery units used for external beam
radiotherapy. The table on which the patient lies and the beam delivery mechanism for
the LINAC rotate about separate axes, providing the ability to adjust the angle and entry
point of radiation fields used during treatments. Each field is further defined by a bank
of multileaf collimators (MLC), small metallic leaves located inside the treatment unit
(LINAC). These leaves can be opened or closed, and used to shape the radiation beam
as it exits the machine. Figure 1 shows a linear accelerator.

For intensity-modulated radiation therapy (IMRT) [8,10,15,20,21,35,37], the shape
of the beams, and the combinations of open and closed MLC leaves control and modulate
the intensity. This provides the ability to dynamically vary the dose to accommodate the
shape of the tumor from different angles so as to deliver full tumoricidal dose, while
normal tissue is spared from excess radiation.

Figure 1. A linear accelerator used for external beam radiotherapy treatment.
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In IMRT optimization, photon fluence from a beam is subdivided into “beamlets”,
which may be imagined to be divergent rectangular solids of fluence emanating from
a radiation source in the LINAC’s treatment head. One dimension of these beamlets,
call it the “height”, is defined by the projection of the MLC leaves onto a plane that
is perpendicular to the central axis of the LINAC’s beam and located at the rotational
isocenter of the LINAC. These height projections are typically between 0.5 and 1.0 cm.
In the “width” direction the resolution of the beamlet (projected on the same plane) is
typically between 0.2 and 1.0 cm.

Optimization is over beamlets, whereas treatment delivery employs “beam seg-
ments” or “field segments”, which are collections of beamlets that have been set to have
the same intensity. The use of field segments is necessary for two reasons: (1) aggrega-
tions of many very small field dose calculations (i.e., on the order of a single beamlet)
are extremely difficult, and (2) treatment time is proportional to the number of fields
delivered. For reasons of economy and patient comfort treatment times are necessarily
kept short.

Radiation dose, measured in Gray (Gy), is energy (Joules) deposited locally per
unit mass (Kg). Fluence for external beam photon radiation is defined mathematically
by the number of photon crossings per surface area. Dose tends to be proportional to
fluence, but is influenced by photon and electron scatter in the patient’s tissues as well
as the energy and media involved. For any beam, selection of beamlet fluence weights
results in a “fluence map” (intensity map) for that beam. Figure 2 shows the beam’s-eye-
view of a 7 × 7 beam with 44 of the 49 beamlets on. Different shades are used to reflect
the different intensity of each beamlet.

A critical aspect of computer algorithms used in radiation therapy (or any other
medical field) is that they must be fast enough that they do not impede the workflow of
the clinic. Waiting for hours or days for an improved or highly accurate result is gen-
erally not possible. Most current optimization algorithms for IMRT treatment planning
search the space of beamlet fluence weights only. This is because if other beam delivery
parameters (e.g., field segments, couch angles, gantry angles, etc.) are incorporated into
the optimization, the time required is prohibitive. The mixed integer programming ap-

Figure 2. A beam’s-eye-view of a 7 × 7 beam with 44 of the 49 beamlets on. Different shades are used to
reflect the different intensity of each beamlet.
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proach proposed herein allows the incorporation of such parameters simultaneously and
yet returns solutions within minutes.

The planning process begins when the patient is diagnosed with a tumor mass and
radiation is selected as part of the treatment regime. A 3D image, or volumetric studyset,
of the affected region, which contains the tumor mass and the surrounding areas, is
acquired via computed tomography (CT) scans. These CT data are used for treatment
planning, and electron density information derived from it is used in the photon dose
calculations for the beamlets. Additionally, magnetic resonance imaging (MRI) scans
may be acquired, fused with the CT volumetric studyset, and used to identify the location
and extents of some tumors – especially those in the brain. Based on these scans, the
physician outlines the tumor and anatomic structures that need to be held to a low dose
during treatment.

It is common practice to identify several regions of the tissue to be treated:
The gross target volume (GTV) represents the volume which emcompasses the known
macroscopic disease; that is, the disease that can be seen by the oncologist. The clinical
target volume (CTV) expands the GTV to include regions of suspected microscopic dis-
ease. The planning target volume (PTV) includes additional margins for anatomical and
patient setup uncertainties; that is, how the patient’s organs and the patient will move
from day to day. All volumetric data is discretized into voxels (volume elements) at a
granularity that is conducive both to generating a realistic model and to ensuring that the
resulting treatment planning integer programming instances are tractable (i.e., capable
of being solved in a reasonable amount of computational time).

2.2. Dose calculation

The dose computation methods involve the principle of convolving the total energy re-
lease in the patient from the radiation source with Monte Carlo-generated enery de-
position kernels and superposition of pencil beam (SPPB) using fundamental physics
describing photon and electron interactions and transport. Our dose model accounts for
the transport of primary and secondary radiation inside the patient, the variation of beam
intensity across the patient surface, the effects of tissue inhomogeneities on the dose,
and the irregular blocked or multi-leaf (MLC) shaped fields. The model consists of three
components for computing the 3D dose distribution:

• Modeling the incident energy fluence as it exits the head of the linear accelerator.

• Projection of this incident fluence through the density representation of a patient to
compute a Total Energy Released per unit MAss (TERMA) volume.

• A three-dimensional superposition of the TERMA with an energy deposition kernel
using a ray-tracing technique to incorporate the effects of heterogeneities on lateral
scatter.

The implementation was based on recent research in this area [1,12,13,22,28,29,32–
34,36]. Figure 3 illustrates the process of the SPPB model for computing the dose to a
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Figure 3. Calculation of dose from the shower of secondary particles resulting from primary intersection
sites at r ′.

point, D(r). The dose at point D(r) comprises contributions from the shower of sec-
ondary particles resulting from primary interaction sites at r ′. The SPPB model provides
accurate results within areas of electronic disequilibrium and tissue heterogeneities.

For each beamlet, the dose per intensity to a voxel is calculated using this dose
engine. The total dose per intensity deposited to a voxel is equal to the sum of dose
deposited from each beamlet. In this paper, for each patient, 16 non-coplanar candidate
fields are generated. The size of the candidate fields and the associated number of beam-
lets is patient and tumor size dependent; varying from 10×10 cm2 with 400 beamlets per
field to 15 × 15 cm2 with 900 beamlets per field. This results in a large set of candidate
beamlets used for instantiating the treatment planning model.

2.3. Mixed integer programming treatment models

Let B denote the set of candidate beams, and let Ni denote the set of beamlets associated
with beam i ∈ B. Beamlets associated with a beam can only be used when the beam
is chosen to be “on”. If a beam is on, the beamlets with positive dose intensity will
contribute a certain amount of radiation dosage to each voxel in the target volume and
other anatomical structures. Once the set of potential beamlet intensities is specified,
the total radiation dose received at each voxel can be modelled. Let wij � 0 denote the
intensity of beamlet j from beam i. Then the total radiation dose at a voxel P is given
by

∑

i∈B

∑

j∈Ni

DP,ijwij , (1)

where DP,ij denotes the dose per intensity contribution to voxel P from beamlet j in
beam i. Various dose constraints are involved in the design of treatment plans. Clinically
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prescribed lower and upper bounds, say LP and UP , for dose at voxel P are incorporated
with (1) to form the basic dosimetric constraints:

∑

i∈B

∑

j∈Ni

DP,ijwij � LP and
∑

i∈B

∑

j∈Ni

DP,ijwij � UP . (2)

Aside from constraining the dose received by each voxel within anatomic struc-
tures, we also constrain the number of beams used in the final beam profile. The motiva-
tion for this is that a simple plan (with a relatively small number of beams) is preferred
over a more complex plan, since a complex plan takes more time to implement in the
delivery room and offers more chances for errors. Let xi be a binary variable denoting
the use or non-use of beam i. The following constraints limit the total number of beams
used in the final plan and ensure that beamlet intensities are zero for beams not chosen:

wij � Mixi and
∑

i∈B
xi � Bmax. (3)

Here, Mi is a positive constant which can be chosen as the largest possible intensity
emitted from beam i, and Bmax is the maximum number of beams desired in an optimal
plan.

Dose-volume relationships within different anatomical structures are set up based
on these constraints. Clinically, it is typically acceptable when 95% of the PTV receives
the prescription dose, PrDose. The coverage constraints for PTV can thus be modeled
as

∑

i∈B

∑

j∈Ni

DP,ijwij − rP = PrDose, P ∈ PTV, (4)

rP �DOD
PTVvP , (5)

rP �DUD
PTV(vP − 1), (6)

∑

P∈PTV

vP � α|PTV|. (7)

Here, vP is a 0/1 variable which captures whether voxel P satisfies the prescription dose
bounds or not; rP is a real-valued variable that measures the discrepancy between pre-
scription dose and actual dose; α corresponds to the minimum percentage of coverage
required (e.g., α = 0.95); DOD

PTV andDUD
PTV are the maximum overdose and maximum un-

derdose levels tolerated for tumor cells; and |PTV| represents the total number of voxels
used to represent the planning target volume. The valuesDOD

PTV andDUD
PTV must be chosen

with care since inappropriately chosen values could cause the system of constraints to
be infeasible.

It is desirable that dose received by organs/tissues other than the tumor volume
should be minimal, as there is a direct correlation between the level of radiation exposure
and normal tissue toxicity. Thus, for other anatomical structures involved in the planning
process, along with the basic dose constraints given in (2), additional binary variables are
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employed for modeling the dose–volume relationship. The dose–volume relationship is
a standard metric that clinicians use when assessing a plan. It is a quantitative measure
of the percentage volume of the anatomical structure receiving dose within specified
intervals. To incorporate this concept into the model, let αk, βk ∈ (0, 1] for k in some
index setK, and let yαkP and zαkP be binary variables. Then the following set of constraints
ensures that at least 100βk% of the voxels in an organ-at-risk, OAR, receive dose less
than or equal to αk PrDose. In our models, the cardinality of the index setK is between 3
and 10.

∑

i∈B

∑

j∈Ni

DP,ijwij � [αk PrDose]yαkP + Dmaxz
αk
P , P ∈ OAR, (8)

∑

P∈OAR

y
αk
P � βk|OAR|, (9)

y
αk
P + zαkP = 1, (10)

y
αk1
P � yαk2P for αk1 � αk2 . (11)

Here, Dmax is the maximum dose tolerance allowed for OAR, and αk, βk combinations
are patient and tumor specific.

There are many objective functions that can be used to drive the optimization en-
gine. For the computational work presented herein, we focus on the objective of mini-
mizing a weighted sum of the excess dose to the PTV and the total dose to organs-at-risk.
For comparisons of these and other models, readers are referred to [27].

3. Computational issues

The MIP instances include the basic dosimetric and volumetric constraints as described
in (3)–(11) in addition to other clinical constraints. The resulting MIP instances have at
least

∑
i∈B |Ni | + 1 + 3(|PTV| + 1)+ ∑

i∈O |K|(2|OARi| + 1)+ (|K| − 1)|OARi| con-
straints;

∑
i∈B |Ni|+ |PTV| continuous variables; and |B|+ |PTV|+∑

i∈O 2|K||OARi|
binary variables, where O is the set of all organs-at-risk and normal structures. For real
patient cases, there are tens of thousands of variables and constraints. For such cases, the
instances have proven to be computationally very difficult for competitive commercial
MIP solvers. Here, we describe a few specialized techniques that have been implemented
to assist in the solution process.

3.1. Constraint and column generation

To maintain a tractable linear program relaxation, at a node of the branch-and-bound
tree, instead of setting up the entire problem instance using all the voxel information, we
generate a master problem which consists of roughly half of the original voxels. This
subset is selected carefully in order to maintain a realistic description of the problem.
As the solution process proceeds, additional voxels are introduced. This leads to the
addition of constraints and the corresponding columns (variables). Constraints which
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have remained inactive for a specified number of LP solves are removed from the master
problem, thus providing a mechanism for controlling the size of the master instance.
Interested readers can refer to [26] for clinical implications of the choice of voxels for
modeling and the associated quality of the resulting treatment plans.

3.2. Specialized set-based branching scheme

For the constraint
∑
i∈B xi � Bmax which bounds the number of beams (gantry angles

and directions) selected in the final plan, instead of branching on each binary variable
with fractional value, we branch on sets of binary variables. In particular, let xLP be the
fractional solution. The branching scheme partitions B into B1 ∪B2 such that

∑
i∈B1

xLP
i

approximately equals
∑
i∈B2

xLP
i . In addition, an attempt is made to choose each setBi so

that the included beams are roughly in the neighbourhood of each other. Two new nodes
are then created via the constraints

∑
i∈B1

xi � Bmax/2� and
∑
i∈B2

xi � �Bmax/2�.

3.3. Geometric heuristics procedure

The heuristic procedure is an LP-based primal heuristic in which at each iteration, some
binary variables are set to 1 and the corresponding linear program is resolved. The
procedure terminates when the linear program returns an integer feasible solution or
when it is infeasible. In the former case, reduced-cost fixing is performed at the root
node, as well as locally on each of the branch-and-bound nodes.

The heuristic procedure focuses on the binary variables

q = (
vP , y

αk
P , z

αk
P

)

from constraints (5)–(11). Given a fractional solution obtained from an LP relaxation at a
node, let U = {j : qLP

j = 1}, F = {j : 0 < qLP
j < 1}, and qmax = max{qLP

j : j ∈ F}. The
heuristic works by first setting all binary variables in U to 1. Next, any variable in F for
which the fractional value exceeds qmax − ε is set to 1, where ε is chosen dynamically
with each fractional LP solution. Finally, it sets to 1 any variable corresponding to a
voxel that is in a specified neighbourhood of a voxel for which the associated binary
variable was already set to 1 in the previous two steps. The final step is based on the
premise that if a voxel satisfies a certain dose bound, then all voxels in its neighbourhood
should also satisfy the dose bound. The implementation requires a one-to-one mapping
between the variables and the geometric locations of the associated voxels in a fixed 3D
coordinate system.

3.4. Disjunctive cuts

In 1960 Gomory [18] first described a disjunctive argument to develop valid inequalities
for mixed integer programs. In 1975 Balas [3] presented a general disjunctive approach
which has been the basis of most recent computational research in this area [5–7,9,14,
25]. Disjunctive cuts, similar to Gomory cutting planes, have the appeal that they can
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be applied to general integer programs without requiring any knowledge of the facial
structure of the underlying polyhedron. Below, we describe our implementation.

Consider the polyhedron

PIP = conv
{
x ∈ �n+: Âx � b̂, xj ∈ {0, 1}, j = 1, . . . , p

}
,

where Âx � b̂ includes Ax � b and the restrictions xj � 1 for j = 1, . . . , p; Â ∈
�m̄×n. Let xt ∈ �n+ be a feasible solution of Âx � b̂ such that 0 < xti < 1 for some
i ∈ {1, . . . , p} and consider the pair of polyhedra

Pxi,0 = {
x ∈ �n+: Âx � b̂, xi = 0

}
,

Pxi,1 = {
x ∈ �n+: Âx � b̂, xi = 1

}
.

Clearly PIP ⊆ Pxi ≡ conv(Pxi,0 ∪ Pxi ,1). Assume that both Pxi ,0 and Pxi ,1 are nonempty
(otherwise, xi , can be eliminated). The following fact, which is motivated by results in
Balas [4], forms the basis of our cut-generation procedure.

Fact. The system

Ây − b̂y0 � 0,

Âz− b̂z0 � 0,

zi − z0 = 0,

yi = 0,

z0 + y0 = 1,

z + y = xt ,
y, z, y0, z0 � 0

is infeasible if and only if xt �∈ Pxi .

This together with Gale’s Theorem of the Alternative [16,31] implies that xt �∈ Pxi
if, and only if, the following linear system is feasible:

α + βT xt < 0,

uT1 Â+ u4ei + βT I � 0,

uT2 Â+ u3ei + βT I � 0,

−uT1 b + α � 0,

−uT2 b − u3 + α � 0,

u1, u2 � 0,

where u1, u2 ∈ �m̄, β ∈ �n, and u3, u4, α ∈ �. From the latter system, form a lin-
ear program by (a) removing the first inequality and embedding it into the objective:
min{α+βT xt } and (b) enforcing an appropriate bounding condition on β. Such a linear
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program will be referred to as a disjunctive LP. If the optimal objective value of a dis-
junctive LP is negative, then the inequality βT x � −α is a valid inequality for Pxi which
cuts off the fractional solution xt .

Empirical tests on the patient instances reveal that it is beneficial to generate cuts
first based on the fractional variables q = (vP , y

αk
P , z

αk
P ). For each such 0/1 variable

that satisfies 0.01 < qi < 0.99, we solve the corresponding disjunctive problem. In
our implementation, ‖β‖1 � 1 (&1 norm) is used as the bounding condition for β.
Computationally, this procedure is expensive as exactly one linear program of approx-
imately twice the size of the original MIP instance must be solved. We perform this
cut-generation procedure at the root node, as well as at tree levels that are a multiple of
10 within the branch-and-bound tree. To avoid excessive computational time, we select
pseudo-randomly only 10% of the fractional variables for cut generation.

4. Numerical results

The numerical work reported in the remainder of the paper is based on a specialized
branch-and-bound MIP solver which is built on top of a general-purpose mixed integer
research code (MIPSOL) [24], using CPLEX V7.1 as the intermediate LP solver. The
general-purpose code, which incorporates pre-processing, reduced-cost fixing, cut gen-
eration, and fast heuristics, has been shown to be effective in solving a wide variety of
large-scale real-world MIP instances. Our algorithmic design thus far has been moti-
vated by clinical cases. Special features as described in section 3 have been incorporated
to assist in the solution process for solving these IMRT MIP instances.

We have tested our system on a collection of patient cases with tumor sites in
various parts of the body. Here, we highlight five cases. For each case, several MIPs
are solved, each having a different value for the maximum number beam angles (Bmax)
allowed in the final plan, as imposed in constraint (3). In all cases, there are a total
of 16 non-coplanar candidate beams each with 400 beamlets. A clinical comparison
of plans associated with varying Bmax is given in the next section. Here, we compare
“MIP” statistics regarding timing, cuts generated, etc. For brevity, we only include
results associated with Bmax ∈ {8, 12, 16}. More detail on implementation issues and
comparisons of computational strategies will be reported in a companion computational
paper.

Table 1 shows the sizes of the problem instances, including number of rows, num-
ber of columns and number of binary variables for each of the patient cases. Table 2
summarizes the solution statistics for one implementation strategy. Initial LP Obj. and
Optimal MIP Obj. denote the objective values of the initial LP relaxation and the opti-
mal objective value of the original MIP. First feasible CPU secs and (First feasible) Obj
denote the time elapsed from the beginning of the solution process to when the algorithm
returns an integer feasible solution, and the corresponding objective value. Cut Number
and Cut Time denote the total number of cuts generated upon termination of the solution
process, and the time used to generate the cuts. Finally, Total elapsed CPU secs denotes
the number of CPU seconds needed to solve the instances to proven optimality.
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Table 1
Problem statistics.

Pt Rows Columns 0/1 variables

1 27804 23820 14032
2 36946 32098 23110
3 54146 39280 29356
4 48092 42098 36134
5 54986 49182 41602

Table 2
Solution statistics.

Pt Initial First feasible Optimal Cut Total elapsed

LP obj. CPU secs Obj. MIP obj. Number Time CPU secs

8 beams
1 85934.6 402.6 135372.2 119202.6 230 4679.2 9178.4
2 168482.1 902.1 1311807.4 1120073.4 260 9201.5 14293.7
3 286829.3 1569.2 1911480.3 1594028.3 387 13290.7 25872.4
4 762383.4 1297.3 3541081.2 2801921.2 291 10275.3 23701.3
5 542102.3 1458.0 2920239.4 2190293.0 308 12015.1 29012.8

12 beams
1 84132.6 321.5 131892.4 112175.3 212 4012.3 9003.4
2 161465.1 802.7 1305027.6 1102156.2 278 10396.4 13639.2
3 280356.7 1321.4 1895023.7 1579396.1 310 12039.3 24803.0
4 729013.5 1045.2 3479372.1 2780123.2 328 14156.7 23201.3
5 518390.3 1301.6 2890273.4 2178016.5 289 10876.1 28112.4

16 beams
1 82376.0 210.7 130291.2 109320.8 221 4203.1 9012.1
2 154018.2 480.1 1290812.4 1078423.5 262 9012.3 13549.7
3 272623.1 927.5 1851560.3 1529039.4 345 13102.5 24193.6
4 702730.4 811.3 3420391.2 2750391.7 321 12907.6 22301.9
5 501390.7 1149.2 2830492.4 2174630.2 301 11245.0 27985.3

We observe that by way of construction, any solution from a 12-beam or 8-beam
MIP is feasible for the 16-beam problem. This is reflected in the LP relaxation objective
value and the optimal MIP objective value. As expected, the bulk of the CPU time
is spent generating cutting planes to close the gap in the objective value. Overall, the
total sum of radiation dose to normal tissue and organs-at-risk (the objective value) and
the solution times appear to decrease with an increase in the number of beams used. On
average, about 45% of the beamlets have positive weight in a feasible solution; moreover,
the weights (intensities) vary significantly, indicating a high level of modulation in the
resulting plan.
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Table 3
Brain tumor case. Figures of merit for five plans distinguished by the number of allowed beams.

No. of beams Coverage Conformity Homogeneity Toxicity to C-shape

16 0.99 1.3 1.1 0.8
12 0.98 1.3 1.5 1.1
8 0.99 1.3 1.6 1.2
6 1.00 1.5 1.4 1.0
4 0.99 1.6 1.5 1.2

5. Clinical results

We include here results corresponding to a brain tumor case and a prostate tumor case.
The plans presented correspond to the first feasible solution returned by our algorithm.
Each plan is evaluated quantitatively based on isodose curves, dose–volume histogram,
and four figures of merit: coverage index, conformity index, homogeneity index and
the toxicity index. The former three indices are calculated according to the Radiation
Therapy Oncology Group (RTOG) guidelines. Specifically, coverage is defined as the
ratio of the tumor volume within the prescribed isodose surface to the total target volume.
Conformity is defined as the ratio of the volume of the prescribed isodose surface to the
target volume. Homogeneity is defined as the ratio of the maximum dose received by the
tumor volume to the prescribed dose. Along with these RTOG indices, toxicity is used
to measure radiation to organs-at-risk and normal tissue. The toxicity index is computed
as the ratio of the maximum dose received by the specified proximal critical/normal
tissue to the prescribed dose. A small toxicity score implies that the normal tissue does
not receive an excessive amount of radiation. From the definitions of the four figures
of merit, one can observe that these figures are not entirely independent. For example,
while it is desirable to obtain a prescription isodose surface big enough to cover the
target volume in order to ensure good coverage, it is also desirable to have this surface
“small” in order to conform to the target volume. In addition, variations in conformity
and coverage affect the amount of irradiation to nearby organs at risk, thus affecting
toxicity levels of these organs.

The first case involves a metastatic melanoma brain tumor (white mass) with a
spherical shaped 1.4 × 1.9 × 1.3 cm3 tumor located in the frontal lobe. The critical
structure for this case is a C-shaped organ as outlined by the white curves in figure 4.
Five plans derived from the MIP model by varying the number of allowed beams (4, 6,
8, 12 or 16 beams) were generated. Table 3 shows the figures of merit for each plan.
Minimizing the excess dose to the tumor helps to obtain plans with good conformity
and homogeneity in dose distribution. The dose restriction on critical structures helps to
achieve low toxicity scores for the C-shaped critical structure.

Figures 4 and 5 contrast three orthogonal views (axial, sagittal, and coronal) of
16-beam and 6-beam IMRT plans obtained from the MIP model. In both figures, red
represents the 100% prescription isodose curve, green represents the 70% isodose curve
and blue represents the 50% isodose curve. Visually there is only a marginal difference
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Figure 4. Brain tumor case. Isodose curves for IMRT plan with 16 beams. Axial, sagittal, and coronal
views.

Figure 5. Brain tumor case. Isodose curves for IMRT plan with 6 beams. Axial, sagittal, and coronal views.

between these two plans. Quantitatively, we can observe from table 3 that when 16
beams are used, a more homogeneous dose and better conforming plan is delivered,
while the C-shape structure is maintained at a low toxicity level.

The second case is an early stage prostate tumor. The critical structures here in-
clude the bladder and the rectum. Table 4 shows the figures of merit for each plan
obtained. In viewing the dose–volume histogram in figure 6, observe the homogeneous
dose delivered to the prostate. The rectum and bladder both receive slightly higher ra-
diation when only 6 beams are used. This degradation in toxicity and conformity is
observed consistently in table 4 when the number of beams used decreases. Figure 7
contrasts the isodose curves from the same two plans on one traversal view slice.

In general, clinical tests have shown that the computational engine can return good
feasible solutions within 30 minutes, and the associated plans from these solutions pro-
vide good clinical figures of merit. Compared to certain commercial treatment planning
systems, some consistent characteristics of plans resulting from the MIP models in-
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Table 4
Prostate tumor case. Figures of merit for five plans distinguished by the number of allowed beams.

No. of beams Coverage Conformity Homogeneity Toxicity

to bladder to rectum

16 0.99 1.12 1.100 1.042 1.042
12 0.98 1.24 1.108 1.126 1.101
8 0.99 1.35 1.111 1.140 1.125
6 1.00 1.46 1.116 1.145 1.126
4 0.99 1.46 1.148 1.175 1.155

Figure 6. Prostate tumor case. Dose-volume histograms for two IMRT plans with 6 beams and 16 beams.
The y-axis represents “percent volume greater than dose level”. In both plans, homogeneous dose is deliv-
ered to the prostate. Note that there is virtually no difference in the dose received by the prostate. However,

a lower maximum dose (toxicity) to both the rectum and bladder is observed with the 16-beams plan.

clude (a) superior dose homogeneity over the tumor volume, (b) reduction of radiation
to organs-at-risk and nearby normal tissues, and (c) improvement in conformity while
maintaining the desired tumor coverage. The results provide evidence that the MIP ap-
proach is viable in producing superior treatment plans which can potentially lead to sig-
nificant improvement in local tumor control and reduction in normal tissue complication.
In addition, our tests demonstrate that real-time planning is achievable.

6. Conclusion

A novel integer programming approach for intensity modulated treatment planning op-
timization has been presented. The MIP model proposed allows simultaneous optimiza-
tion over the space of beamlet fluence weights and beam and couch angles. Based on our
experiments with clinical data, this approach can return good plans which are clinically
acceptable and practical. The plans consistently provide homogeneous and conformal
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Figure 7. Prostate tumor case. Isodose curves for IMRT plan with 6 beams and 16 beams, respectively. The
prostate is outlined in pink. The two critical structures are bladder (top yellow contour) and rectum (low
yellow contour). Red represents the 100% prescription isodose curve, green represents the 70% isodose
curve and blue represents the 50% isodose curve. Note the more conformal dose in the 16-beam plan

(right).

dose to the tumor, while maintaining low irradiation to critical structures. Although the
mixed integer programming instances are difficult to solve to optimality, the special-
ized techniques implemented enable solving them to proven-optimality. On average,
the first feasible solution is returned within 30 minutes, and is of high quality clini-
cally. Compared to currently available systems, most of which perform optimization
over only on a subset of beam parameters, this MIP approach allows consideration of a
more comprehensive set of parameters; and with the reasonable solution time, it is viable
for incorporation within a real-time treatment planning system.
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