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Abstract

The problem we consider is short-term harvesting planning for a total planning period of 4-6 weeks where
we want to decide the harvest sequences or schedules for harvest crews. A schedule is an order or sequence
of harvest areas assigned to each crew. The harvesting of areas is planned in order to meet industrial
demand. The total cost includes harvesting, transportation, and storage. One considerable cost is due to the
quality reduction of logs stored at harvest areas. There are a number of restrictions to be considered. Areas
are of varying size and the composition of assortments in each area is different. Each harvest team has
different skills, a different home base, and different production capacity. Another aspect is the road
network. There is a cost related to road opening (restoring, snow removal). In this paper, we develop a
mixed integer programming (MIP) model for the problem. The schedules are represented by 0/1 variables.
With a limited number of schedules, the problem can be solved by a commercial MIP solver. We have also
developed a heuristic solution approach that provides high-quality integer solutions within a distinct time
limit to be used when more schedules are used. Computational results from a major Swedish forest
company are presented.

Keywords: forestry; operations research; harvesting; scheduling; heuristics; integer programming; modeling.

Introduction

At Swedish forest companies the wood flow planning, including harvest and transportation
planning, occurs in different stages. An overview of wood flow problems in Swedish forestry is
given in Carlsson and Ronnqvist (1998). Larger forest companies in Sweden have an organization
whereby operations are divided into smaller regions, which may be composed of one or several
districts. In each district, both medium and short-term harvesting plans are made. On a medium
or annual level, planning is based on several-year-long harvesting plans and is aimed to identify
which harvest areas to harvest in given months in order to balance supply and industrial demand.
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Here it is important to consider accessibility during different parts of the year. On a shorter time
horizon, plans are often made for the next few weeks. Plans at different levels are continuously
updated in rolling planning horizons.

The harvest planning at a district includes decisions about which areas to harvest and which
crews should do it. The selection of harvesting areas strongly affect the production level of
different assortments. Possibilities of varying the production level are described in Brunberg
(2001). This involves, for example, selecting areas with larger trees, areas with particular
assortment mix, allowing overtime, changing or adding equipment for crews. The planning also
includes transportation planning, road maintenance decisions, and control of storage in the forest
and at terminals. The weather conditions affect annual harvest planning. An annual plan
considers accessibility of both roads and harvest areas, and makes sure that monthly demand of
each assortment or species can be harvested. In Karlsson, Rénnqvist and Bergstrém (2002), a
mathematical model for the annual problem has been developed and tested.

The problem we consider in this paper is an operational planning problem at district level. The
total planning period is typically five to six weeks. The main decisions deal with the same aspects
as the annual planning problem, but there are differences. In operational planning, each crew is
given a schedule, which means a defined sequence of areas to be harvested during the planning
period. Here, costs for moving equipment are considered as the actual sequence of areas is known.
In annual planning, the sequence of harvest areas to be harvested during a month is not defined.
Furthermore, it is important to take into consideration the storage level and age of logs, as a
significant cost is due to the quality reduction of products stored. The short-term planning
problem, which in this case has a planning horizon of 5-6 weeks, starts from a list of areas suitable
for the particular planning period. The planning is done on a rolling horizon and 3-4 weeks is
enough to consider actual situations at industries and for crews. However, to take away end
effects, a number of weeks is added. The total supplies of assortments in harvest areas must ensure
that the industrial demand is satisfied. Moreover, the harvesting areas must be accessible. This list
may be a result of an annual plan or may be given by a planner at a given time. This means that
the accessibility of roads and areas is considered as given at this level of planning.

A decision support system concerning short-term harvesting planning, used in the Chilean
forestry industries is called OPTICORT (Epstein et al., 1999a, 1999b). This system is based on a
linear model with a column generation procedure. The main decisions are related to which stands
to harvest, what type of machinery to use for each operation, what volume to cut each week or
period, and what products should be delivered to different destinations to satisfy demand.
Decisions concerning which bucking patterns to use are included. The total planning period is
three months. There are several models supporting decisions about scheduling equipment on short
time horizons. Jarmer and Sessions (1992) describe LoggerPC, a program that provides a physical
feasible design analysis for harvesting by cable. The PLANEX system (Epstein et al., 1999a,
1999b) determines the optimal location of towers, roads, and skidder operations.

Tactical and operational harvest planning often includes discrete decisions about specific areas
or roads, which leads to MIP problems. The presence of integer variables and the size of real-
world problems often requires heuristic methods to achieve practical solution times. A long-term
spatially constrained harvest scheduling problem is studied in Yoshimoto, Brodie and Session
(1994). They have developed a heuristic procedure in which the problem is partitioned into
numerous subproblems. Weintraub et al. (1995) describe a heuristic algorithm for solving a
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tactical problem for two to three decades including harvesting decisions and road building.
The solution procedure iterates between solving relaxed LP versions of the model and
applying rules to fix fractional variables to integer variables. Nelson and Brodie (1990) give a
comparison of a heuristic with an optimization method applied on a three-decade tactical
harvesting problem.

Our short-term harvesting problem has to be compatible with the annual planning. This is
achieved through a hierarchical approach where tactical and operational harvesting plans are
made by two different models. The output from the tactical gives input, i.e., a list of possible
areas, to the operational model. In practice, plans at different levels are continuously updated. A
surplus of possible harvesting areas is used as a starting point for the operational planning. To
achieve compatible decision-making on different levels, different approaches have been used.
Hierarchical methods have been developed to integrate tactical and strategic planning (Weintraub
and Cholaky, 1991). McNaughton, Roénnqvist, and Ryan (2000) present an integrated
model, which incorporates both strategic long-term goals and detailed area-sensitive tactical
planning.

We start by developing a mathematical model. Furthermore we are interested to find good
solutions in short times. This often leads to heuristic procedures. The main decisions in our
problem are similar to the main decisions in OPTICORT, except for estimating bucking
patterns. We do not consider bucking patterns, as Swedish harvesters are equipped with on-
board computers that provide cutting instructions. We also include the scheduling of crews to
harvest areas. Another important aspect is storing at arecas and terminals. Considerable
cost is related to storing outdoors, because of quality decrease. The main new aspects in our
problem are:

e scheduling of the harvesting crew;
e age-related storing costs.

There are a large number of possible harvesting schedules for the teams, which correspond to a
large number of binary variables. Furthermore, the consideration of different age classes leads to a
large number of continuous variables and constraints in this problem.

Currently, planning is carried out manually. There is most often a limited number of qualified
and experienced persons to make the short-term harvesting plans and they spend a large amount
of time developing practical plans. At the same time, it is difficult to consider all aspects of the
planning as it covers many components. Coordination between districts is very limited and it is
only considered particular situations during the year.

We have developed an MIP model for the short-term harvesting planning problem. With a
limited number of schedules for the harvesting crews it is possible to solve the problem to
optimality directly by using a commercial integer solver. We have also developed a heuristic
solution procedure that finds good solutions fast. It is not a production system, but it is intended
to become an important part of a future decision support tool.

The remainder of this paper is organized as follows. In the next section the short-term
harvesting planning problem is described. Next we present the mathematical formulation of the
problem. Then the case study is described, and the solution methods and the numerical results are
given. Finally some concluding remarks and suggestions for further work are given.
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Problem formulation

Harvest areas

Each harvest area is unique, with its own properties. It varies in size and in available volumes of
assortments after harvesting. Areas require between 1 and 20 days work to harvest. The
operations are either final felling (all trees in the area are harvested) or thinning (a proportion of
the trees are harvested in order to improve the overall growth). Once an area is harvested it
produces a given amount of assortments. The production time depends on the average size of the
trees, because of equipment constraints. Therefore, the amount of different assortments harvested
in a particular week for a crew depends on which areas are harvested. Each area is also connected
to a particular road or road group. Table 1 gives some typical data for a number of areas in the
case study.

Storage

An important aspect is the loss or reduction of value due to quality deterioration. This happens
when logs are stored outdoors, at areas or terminals. The quality decrease is negligible during the
cold season of the year. In the north of Sweden this usually corresponds to December through
March. During the rest of the year this quality loss causes considerable costs. Spruce pulp (GM) is
the most sensitive assortment and it can lose almost its total value after five weeks of storing. Pulp
mills do not accept spruce pulp stored for more than four to five weeks. Table 2 gives an example
of the value decrease given in SEK for different assortments and different storage times. In order
to handle storage, we need to keep track of the age of the wood.

Harvest teams

A harvest crew or team consists of a harvester and a forwarder, and two working groups
with two people in each. The harvester fells and bucks the trees. The forwarder collects
all the piles on the area and moves the logs to pick-up points adjacent to the forest road. Each

Table 1

Illustration of information given for harvest areas

Name Hours Size TT GT ™ GM LM
Koffsan 20.8 0.237 217 — 100 — —
Stormon 30.9 0.447 12 37 22 32 3
Dalbrants 29.8 0.419 16 252 46 152 73
Harte 18.2 0.195 45 13 22 15 —
Lunnsjo 24.3 0.296 83 407 44 207 —

Notes: The column ‘Hours’ gives the number of standard hours to harvest the area. Each crew then has a relative factor or efficiency
rate against this. ‘Size’ is the average tree diameter given in metres: This may decide if certain crews can harvest it or not depending on
their equipment. The quantities of the different assortments given in cubic meters are also given in the table. The different assortments
are “TT’: Pine-timber, ‘GT’: Spruce-timber, and “TM’: Pine-pulp, ‘GM’: Spruce-pulp, and ‘LM’: Birch-pulp.
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Table2

Example of value decrease per m® for different assortments and age in SEK

Sort Week 1 Week 2 Weeks 3 Week 4 Week 5 Week 6
TT 6.67 13.33 23.25 31 38.75 46.5
GT 6.67 13.33 13.25 31 38.75 46.5
LM 1.67 3.34 5 29.76 54.34 79
GM 0 20 20 281 476 505
™ 1.67 3.34 5 34 63 92

team has a unique capacity and efficiency depending on their equipment. Some teams con-
centrate on final felling, and others on thinning. Some teams are not able to harvest
particular areas due to their equipment. For each combination of harvest area and team, there
is a given production capacity and cost for harvesting and forwarding. The personnel in each
harvest team have given home bases, and there is a specific travel distance and cost for
each combination of working team and harvest area. Each team travels back and forth each
working day.

Harvesting schedules

The main decision in the planning problem is to give each working team a schedule. A schedule is
a sequence of areas, defining which areas and in what order these are to be harvested during the
planning period. The length (time) of a schedule covers (at least) the number of working days
during the planning period. For each planning period, there are a number of areas, which are
potential areas to harvest. This correspond to about 1.5-2 times the actual demand. There are
many possible schedules for each team. We generate a limited number of schedules, typically
1000-2000, for each team starting from their particular list of possible harvesting areas. Areas
corresponding to short travel (of crew) and moving (of equipment) distances are more likely to be
included. The procedure for generating sequences is described in the next section. Each schedule
has a given cost. This, together with volumes harvested of different assortments in each area
during each time period, and road conditions associated with each sequence, is computed. We
note that each sequence consists of many pieces of information. In the model, each schedule will
correspond to the contents of one column (or variable).

In Fig. 1 we illustrate a schedule, and the volumes of assortments harvested in each time period.
The sequence starts with harvesting area 3, then areas 4, 7, and finally area 2. In this example, the
planning period consists of five time periods. Each time period corresponds to five working days.
Assume that area 3 requires seven days of harvesting. This means that 5/7 of the total volumes
harvested in area 3 is produced in time period 1 and 2/7 in time period 2. Furthermore, area 4
requires five working days and the harvested volume is produced in time periods 2 and 3 (3/5 and
2/5 respectively). Area 7 is smaller and requires three days and is finished in time period 3. Finally,
area 2 requires 13 days. The overall schedule stretches outside the planning period.
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crew 1
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crew 2

Industry

Fig. 1. Example of a harvesting sequence.

Industrial demand and storage

The industrial demand for each industry (saw, pulp- or paper mills) is given per
week and assortment. Each industry has a given storage capacity with a given cost. The
transportation cost depends on assortment and distance, and is proportional to the volume
transported.

Roads

Each forest road is included in a group of forest roads. Each group of forest roads is assigned a
specific ID number. Some areas are connected directly to the state road network. Most areas are
connected to a forest road group, which in turn is connected to the state road network. The use of
road group is standard, as single roads are regarded as too detailed. Also, there are areas that are
connected to forest roads, which are connected to another forest road group before the state road
network is reached. This hierarchy decides how maintenance and snow removal must be carried
out. Accessibility of the state roads is guaranteed. The short-term plan is based on the assumption
that all roads connected to the areas in the list are accessible to each road given a cost. Some forest
roads need restoring to be accessible, e.g. in wintertime snow must be removed. The road
dependence is illustrated in Fig. 2. In this example areas 1, 2, 3 and 4 are connected to road group
1, which is connected to the state road network. Areas 5, 6, and 7 are connected to road group 2,
and areas 8, 9, and 10 to road group 3. Road group 3 is connected to road group 1 or 4 and road
group 2 is connected to road group 1 or 5, before reaching the state road network. The road
network can have any structure.
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State Road
Road 4

Area 9 Area 10

State Road

Fig. 2. Tllustration of a possible road network.

Modelling

In this section, the mathematical model is presented. A premise for the model formulation is that a
number of harvesting sequences is available for each team. The procedure for generating
sequences is also given in this section.

Mathematical formulation

First the defined sets used in the model are introduced.

S: The set of all harvesting sequences for all working teams.

SQ(q): The set of schedules that correspond to crew g¢.

SA(i): The set of schedules in which area 7 is included.

I: The set of all harvesting areas suitable for harvest during the planning period and areas with
stocks harvested before the planning period started.

J: The set of industries with demands from the district.

P: The set of products at harvesting areas.

L: The set of terminals it is possible to use for storing.

T: The number of time periods during the total planning period.

A: The different age classes of the harvested timber, i.e., the number of time periods it has been
stored (given in weeks).

R: The set of roads connecting the areas to public roads.

R”(r): Roads adjacent to road r, i.e., roads connecting r to a higher level in the road hierarchy.
R(i): The set of roads r that connects area i to the next level of roads (or public road).

The data needed to formulate the model is given below. All costs are unit costs when applicable.

K35 = cost of schedule s including harvesting, forwarding, travelling, and moving equipment.
KR = cost for using road r during time period .
Pl.jU,'C = unit transportation cost from area i to industry j of assortment k.
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P};k = unit transportation cost from area i to terminal j of assortment k.
P,?,j = unit cost for transportation from terminal / to industry j of assortment k.

RE, = value reduction in areas/terminals of assortment k of age a.
Rl = storage cost at industries of assortment k of age a.
4= the highest age class considered, corresponding to timber stored a”'weeks or more.
S; = total supply at area i.
dy, = demand at the industry j of assortment k in time period .
by, = storage capacity of product k at industry j during time period ¢.
aiis = amount of assortment k harvested in area i in period ¢ using schedule s.
hg, = 1 if (part of) area i is harvested during time period ¢ in schedule s, 0 otherwise.

The variables used in the model are as follows.

| 11if sequence s is used,
* ] 0 otherwise.

| 1'if road r is used, during time period ¢,
e 0 otherwise.

Ugar = flow from area i to industry j of assortment k of age a during period 1.
Vinear = flow from area i to terminal / of assortment k of age a during period ¢.
Wijka: = flow from terminal / to industry j of assortment k of age a during period .
zjka, amount of assortment k of age a used at industry j during period ¢.

L% . = storage in area i of assortment k of age a during period 7.

Ll .. = storage at terminal / of assortment k of age a during period 1.

Lfkm = storage at industry j of assortment k of age a during period .

Now the model can be formulated as:

mmZKSxS + ZZ ty,,

seS reR teT
2D D D D Pttt 33> D D Puvia+ D> D> DD Piiika
iel jeJ keP acA teT icl leL keP acA €T leL jeJ keP acA €T
+ Z Z Z Z Rkaszat + Z Z Z Z Rkaleat + Z z Z Z R /kat
i€l keP acA teT leL keP acA teT J€J keP acA teT
subject to:
Z Xy <1 Vi (3.1)
SESA(i
Z x;=1Yg (3.2)

s€S0(q
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Yrt < Z Vit VV, 4 (39)
”PERP(r)

X5, yre € {0, 1} Vs, r,t (3.10)

Uijkaty Vilkats Wijkat s Zjkat s Lgmp L[{vaga L/{]m[ = 0 Vi,j, k7 a,t (3 1 1)

The objective is to minimize the total cost. The first term represents the costs of schedules, and
each team has a given number of sequences. There is a particular cost for each schedule, including
harvesting, forwarding, travelling, and costs for moving equipment. The second term expresses
costs associated with road opening and maintenance. The third, fourth, and fifth terms in the
objective function correspond to transportation costs; from areas to industries, from areas to
terminals, and from terminals to industries. The last three terms in the objective function
represent storage costs for logs kept at the harvest areas, terminals, and industries.

Constraints (3.1) state that each area can be harvested at most once. Constraints (3.2) specify
that each team will be given exactly one of its schedules. The storage balances for logs kept at
harvesting areas are described by constraints (3.3a), (3.3b), and (3.3c), where the storage of each
assortment and age at the end of each time period are determined. Constraints (3.3a) represent age
class 1, which corresponds to products harvested in current time period ¢. The number of age
classes considered is a”!. The highest age class corresponds to timber that is stored ¢ time periods
or more. After a” periods the additional reduction of value is 0. The storage of age class a” is
described by constraints (3.3c). Constraints (3.3b) specify the storage level of all age classes except
age classes 1 and «”. Constraints (3.4) are similar to (3.3) but specify the storage levels at
terminals. Storage balances at industries are specified by constraints (3.5a), (3.5b), and (3.5c). The
storage level at industries is limited through constraints (3.5d). In addition, constraints (3.6)
assure that demands at industries will be satisfied.

Constraints (3.7) and (3.8) require at least one road connected to area i to be open if
transportation of logs from that area i is done or if area i is harvested, respectively. These two
constraints are needed as the logs can be transported from an area in a later time period than the
area was harvested. Constraints (3.9) specify the precedence relations between roads. The set
R”(r) is the set of roads, connecting road r to the next level (or higher level, if the state road is the
highest) in the road hierarchy. This set is empty for those roads, which are directly connected to
the state road. Finally (3.10) and (3.11) define variable bounds.

Generation of harvesting sequences

The number of possible schedules for each team is very large. Areas are spread out all over the
district and each team has different home bases. It is reasonable to assume that short travel and
moving distances will be more efficient than long travels. We generate a limited number of
schedules where those with short distances are more likely to be constructed. The probability of
each area to be the first in the schedule is inversely proportional to the travel distance for that
combination of area team. The probability of each area to be the next area in the sequence is
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Initialisation:
Sequence number n =0

v

n=n+1

—> Select first area i to schedule S.

Select next area i to S.
Check that 7 is not already
Complete schedule included in S.

S?

Store schedule S.

v
NO

STOP.

Fig. 3. The flowchart of the algorithm to generate a specified number (Nb) of sequences S for each team.

inversely proportional to the moving distance for that combination of harvest areas. The
algorithm that generates a fixed number (Nb) of sequences for each team is described in Fig. 3.
During this procedure, the cost of each sequence and the associated data (the corresponding
column) are calculated. We have also tried an approach where schedules are randomly generated
without any concern to distances, without any improvement. There might be a very small
possibility that the same column is generated twice, but this has no effect on the solution approach
and is not worth checking.

Case studies

The case study comes from Holmen Skog, a major Swedish company, and its Bergsjo district in
the Iggesund region. Holmen is one of the largest forest owners in Sweden with more than one
million hectares of forest. Holmen Skog is responsible for providing raw material to the Swedish
industries included in Holmen, consisting of a group of companies, where both saw-, pulp- and
papermills are included. The Iggesund region is divided into six districts. The annual harvested
volume at Bergsjo district is about 250 000 m®.

We have constructed two basic cases corresponding to the scenarios during two different
planning periods in 2000, denoted case A and case B respectively. Cases AY and BY correspond
to case A and B without usage of age classes (as will be the case during winter). The total planning
horizon is five weeks. There are five teams working full-time. The harvesting plan includes harvest
crews who work full-time, with the possibility of using an extra resource part-time. The total
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Table 3
Information about the size of cases

Aspect Case A Case B Case AY Case BY

(O8]

~N LN B
S

— W L NN D —
(O8]

BN V. IRV B N NS RV NN
N

— NN =

Number of areas
Number of industries
Number of terminals
Number of crews
Number of assortments
Number of age classes
Number of time periods
Number of Roads

—_
[\
—_
[\

supply of different assortments is about 1.5 times the demand. There are five industries. All cost
functions and other data needed are obtained from The Forest Research Institute of Sweden. A more
detailed description of data and methods for gathering and coordinating these are presented in
Bergstrom, Forsberg and Karlsson (2002). Some basic data from the cases are summarized in Table 3.

Numerical tests

We have used two solution approaches. First we used CPLEX 7.0 and solved the model directly.
Second we used a heuristic approach with the purpose to find feasible solutions fast. To evaluate
the quality of the LP solutions we have tested a pseudo column generation approach for the linear
relaxation of the problem, in order to study the effect of the number of schedules used.

All the computations were performed on a 1.7 GHz Intel workstation, with 1 GB RAM
memory. CPLEX was also used for the LP problems obtained in the heuristic solution procedures
and in the column generation tests. The mathematical model was implemented using AMPL, see
e.g. Fourer, Gay and Kernighan (1993), which is a modeling language system that includes
possibilities for developing executable scripts. The harvesting sequences and associated data are
generated through a C++ program.

Direct solution

With a limited number of harvesting sequences, the problem can be solved directly using CPLEX.
The results are summarized in Table 4.

The solution time differs for the different test examples. The last instance (example 10) takes about
six hours to solve. A larger number of schedules generally seems to provide better objective value but
requires more computation time. The solution time is within reasonable time limits for these cases.

Heuristic solution approach

We were interested to include more schedules and still find good solutions quickly. From this
point of view, it is of interest to develop heuristic solution procedures. Fixing variables in a greedy
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Table 4
Results of different test examples applying CPLEX directly (with default settings)

Ex Case Sequences Continuous variables Constraints CPU (min) B&B nodes Objective value (SEK)

1 A 6000 36,750 5470 6.3 443 1,613,260
2 A 7200 36,750 5470 183 24,667 1,448,400
3 A 8400 36,750 5470 138 14,075 1,446,942
4 A 9000 36,750 5470 200 23,973 1,446,942
5 A 12000 36,750 5470 120 23,397 1,441,685
6 AV 12000 7350 1370 65 10,663 1,390,517
7 B 6000 43,750 6352 13.3 1922 1,791,386
8 B 9000 43,750 6352 233 21,645 1,503,370
9 B 12000 43,750 6352 148 25,132 1,498,353
10 BY 12000 8750 1552 367 72,358 1,434,770

Note: The number of binary variables in the problems is equal to the number of sequences plus the number of binary variables
corresponding to road-opening decisions. The number of 0/1 variables associated with roads is 100 in all tests. Ex = Problem number

fashion has been successfully applied to, for example, the crew pairing problem (see Marsten,
1994). The solution approach to the harvest problem in Weintraub et al. (1995) is based on
repeated solution of the linear relaxation and fixing integer variables. We have tested a heuristic
based on branch-and-bound (Wolsey, 1998) and constraint branching (Ryan and Foster, 1981).
We produced a limited branch-and-bound tree and performed only a depth-first search, where the
I-branch (the branch where a variable is fixed to value 1) is chosen. McNaughton (1998) presents
an application where constraint branch is applied to harvest planning. Each branching decision
deals with a subset of the variables, instead of one single variable as in classical variable
branching. Binary variables (in our case, variables representing schedules) are divided into two
disjunctive subsets, where the sum of the variables is forced to be equal to 0 or 1 in the two
subproblems obtained after branching. In our case, constraint branching strategy gives a more
balanced branch and bound tree. Unbalanced tree structure has been proven in many cases to be
ineffectively searched in comparison to more balanced trees (Wolsey, 1998). We have used two
different approaches to divide schedules into subsets within the branching. In both approaches,
branching was based on harvesting decisions concerning one area in a particular time period. We
also note that variable branching is a special case of constraint branching where one subset only
contains one variable.

The solution procedure involves solving a sequence of LP problems. First, the permanent teams
working full time are considered, and secondly teams working part time and road decisions. The
heuristic solution procedure is illustrated in Fig. 4.

The first LP solution provides a lower bound of the optimal objective value. As we limited the
search to depth search in the 1-branch we are not guaranteed an optimal integer solution, nor even
a feasible solution. The reason is that we only explored a part of the entire B&B tree. The method
can also be viewed as an integer allocation procedure, in which binary variables are fixed and LP
problems are repeatedly resolved. Another approach is to further generate schedules within the
heuristic procedure. This can be viewed as applying branch and price (Barnhardt et al., 1998).
Here, pricing means that we generate additional columns or schedules in each node of the branch-
and-bound tree. It is also possible to apply the approach until all permanent crews have a fixed
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solution to the problem (integer values
correspond to extra teams and road 1
opening decisions).

Fig. 4. Flow chart of the heuristic solution procedure.

schedule. The remaining part of the model is much smaller, and we can use a commercial MIP to
solve this.

We have implemented two different strategies for implementing constraint branching, both
based on a harvesting decision concerning an area i in a time period 7. These are denoted Strategy
1 and 2 respectively and are described below.

Strategy 1

In the first strategy, branching is based on the largest fractional part of area i that is harvested in a
time period ¢, according to the LP solution. For each combination of area and time period (i,z), we
estimate the harvesting in proportion to maximum possible amount harvested with respect to
possible schedules, /;,. Let:

SP = the set of possible schedules s.
SI = the set of schedules where area i is harvested in time period ¢.

Then,

hiy = Z Z AifeisXs/ max(z Aiis|s € SP) (5.1)

seSI keP kepP

The largest fractional harvesting, max (4;|h;;<1) and corresponding area i’ and time period 7’ is
evaluated. In the next LP, area i/’ is planned to be harvested to the maximum possible in time
period ¢'. Let:

SPF = the set of possible schedules, where: a;,s = max (@, s)
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Then in the next LP problem the following constraint is added:
d ox=1 (5.2)
SESPF

The largest possible amount that can be harvested at a certain area, max (a;,,), must be checked
after each branching, as the number of possible schedules decreases in each subproblem.

Strategy 2

In the second strategy, the branching is based on the largest fractional value corresponding to the
fact that an area i is started to be harvested in time period ¢, according to the LP solution. For
each combination of area and time period (i, 7), we estimate the sum of the schedules where area i
is started to be harvested in time period ¢, b;,. Let:

SB = the set of schedules, where the harvesting of area i is started in time period ¢.
Then the value of b, is:
b= Y%, (53)
seSB

The largest fractional start of harvesting, max (b;|b;;<1), and corresponding area i’ and time
period ¢’ is estimated. In the next LP problem, area i’ starts to be harvested in time period #'. Let:

SF = the set of schedules where the harvesting of area i’ is started in time period #'.
Then in the next LP problem the following constraint is added:
> x=1 (5.4)
SESF
An advantage of this way of branching compared with the first is that estimation of the largest
fractional value to branch on is more effective, as we do not need to estimate max (a;.,) to
calculate the fractional values.

The strategies have been applied to a number of test examples based on case A. We have
implemented the strategies in AMPL, and results are summarized in Tables 5 and 6. Here, we have
example number (‘Ex’), the number of sequences included (‘Seq.”), CPU-time (in minutes) to find
the optimal integer solution (‘IP-CPU’), to obtain the heuristic solution (‘H-CPU’) and to solve
the first LP problem (‘LP-CPU’). Furthermore, the number of subproblems solved in the heuristic
is given (‘NB LP’). The objective values of the optimal solution and the heuristic solution are
given in SEK. The objective values are compared and the difference is given as a percentage in the
last column.

The first branching strategy is too strong. Using depth first search on the test examples 1-5 did
not generate feasible solutions. In Table 5 we give the results for examples 2 and 3 if the heuristic
procedure is interrupted after a fixed number of subproblems (which provided feasible solutions).
One reason there are problems finding feasible solutions is a combination of the strategy and too
few schedules. We interrupt after 7 and 10 subproblems and then use CPLEX to solve the
remaining problems.

The results of the second heuristic procedure are summarized in Table 6. In these instances,
feasible solutions were found. In example 5, we also present the result when the heuristic
procedure is stopped after a fixed number of subproblems (10 and 5).
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Table 5
Computational result applying heuristic 1, with fixed number of sub-problems

Ex Seq. Optimal solution IP-CPU (min) Heuristic solution H-CPU NBLP LP-CPU H/IP (%)

2 7200 1,448,400 183 1,505,971 34 7 7 +4
3 8400 1,446,942 138 1,479,040 44 10 7.3 +2.2
Table 6

Computational result applying heuristic 2

Ex Seq. Optimal solution IP-CPU Heuristic solution Heuristic CPU NB LP LP-CPU Diff % H/IP

2 7200 1,448,400 180 1,469,400 41 15 7 +1.5
3 8400 1,446,942 138 1,486,510 39 13 7.3 +2.7
4 9000 1,446,942 200 1,451,260 37 16 8.3 +0.3
5 12000 1,441,685 120 1,487,839 50 15 6.8 +3.2
5 12000 1,441,685 120 1,482,097 40 10 6.8 +2.8
5 12000 1,441,685 120 1,456,577 51 5 6.8 +1.0

In these examples, the heuristic approach yields solutions with an objective value within a few
percent of the optimal solutions. Computational time is more than twice as fast as using CPLEX
direct. The extended search for example 5 provides a better result, but we cannot guarantee that
the remaining integer problem is easy to solve. The second branching strategy is not as strong as
the first. A lower bound of the optimal objective value is obtained in the first step of the heuristic.
An estimation is that half of the total time needed to get an integer solution is spent on solving the
subproblems. Also, AMPL is not efficient when it comes to computational speed. To implement
the heuristic in C and CPLEX directly would gain a factor of decrease in CPU time.

Column generation

To increase the number of schedules we apply a pseudo column generation approach. Column
generation, developed by Dantzig and Wolfe (1960), is a common method for solving linear
problems with a large number of variables (Lasdon, 1970). First a restricted LP problem with a
limited number of variables is solved. Then, dual information from the LP solution is used to set
up a subproblem to find the best negative reduced cost column. If no column with a negative
reduced cost exists, optimality is verified. Column generation is essentially a technique for LP
problems. An integer problem can be solved by branch and price (Barnhardt et al., 1998). This
involves the classical branch-and-bound method, in which new columns are generated within the
branch-and-bound tree.

We use a pseudo column generation approach to make an evaluation about possible
improvement of the objective with more schedules. The procedure is based on a large pool of
columns generated a priori, according to the procedure described in Fig. 3. The pseudo column
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Fig. 5. The pseudo column generation procedure.

Table 7
Results from the column generation test

Test 1 (Number of sequences in the pool: 150 000) Test 2* (Number of sequences in each pool: 150 000)

It. Sequences in LP Objective value LP Nb of seq. Neg. RC Sequences in LP Objective value Nb of seq. Neg. RC

1 3000 1,431,360 3200 3000 1,431,360 3200
2 6200 1,410,046 214 6200 1,410,046 228
3 6414 1,409,467 127 6428 1,405,885 120
4 6541 1,409,463 6 6548 1,404,071 48
5 6547 1,409,463 0 6596 1,403,858 89
6 6685 1,401,643 60
7 6745 1,400,835 31
8 6776 1,400,660 47
9 6823 1,400,581 29
10 6852 1,400,367 20

Notes: It. = iteration number; Sequences in LP number of sequences including variables representing harvest schedules; Nb. of seq.
Neg. RC=number of sequences with negative reduced cost in the pool, estimated based on dual variables obtained from the
corresponding LP problem.

generation approach is summarized in Fig. 5. First, a large number of feasible schedules are
generated. In the first LP problem, a restricted number of these are included. Then the LP
problem is solved repeatedly where schedules from the pool with negative reduced costs are added
in each step.

The results are summarized in Table 7. In Test 1, the same pool consisting of 150 000 feasible
schedules was used throughout the procedure. In each step, all sequences in the pool with a
negative reduced cost were added. After six iterations, we did not get any improvements of the
objective value. In Test 2, a new pool of 150000 sequences was considered in each iteration. In
each step, all schedules from the active pool, with negative reduced cost were added. It is hard to
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estimate the total number of columns considered as they are regenerated in each step. The second
test was stopped after 10 iterations. The results are summarized in Table 7, where we have the
iteration number (‘It.”), the number of sequences (variables representing harvest schedules)
included in the corresponding LP problem (‘Sequences in LP’), the objective value of the LP
problem (‘Objective value LP’) and the number of sequences with negative reduced cost in the
pool, estimated based on dual variables obtained from the corresponding LP problem (‘Nb. of
seq. Neg. RC).

The objective value in Test 1 decreased 1.5% using 150 000 sequences as compared to 3000. In
Test 2, the total number of considered columns is larger than 150000 as we generate a new set of
150 000 columns in each iteration. The objective value decreased 2%. A conclusion is that it
would be an advantage to include more columns in the suggested IP model, at least to improve the
lower bound for the LP relaxation.

Concluding remarks and future work

The developed model and solution process are important parts of a future decision support system
for short-term harvesting planning. With such a system, it is possible to quickly generate solutions
and test different scenarios. Critical staff can then spend more time on other more qualitative
aspects of the forest management. At present, harvesting operations are scheduled manually and
planning is strongly dependent on the senior planner at the district. It is very difficult to include all
aspects of the decision problem; the age of storage is difficult to consider; manual solutions tend to
consider the current problems, e.g. if an industry is lacking some assortment; it is very difficult to
include the age of the logs, if so it is merely to remove logs getting too old. This often leads to
plans with emergency changes just to satisfy an urgent need.

The proposed model integrates planning of the different steps from harvesting in the forest, to
the delivery of logs at the industries. Integrated planning leads to decreased total cost.
Furthermore, it is possible to analyze the effect of different changes in the premises, such as
changes in demand or production capacities. The model is supposed to be used in a rolling time
horizon where a new problem is solved each week. With such an approach, the end states (from
one solution) are not critical. This is otherwise a concern with fixed time periods. Solutions were
checked and evaluated by persons at the Forest Research Institute of Sweden and planners at
Holmen Skog. These evaluations show that the solutions of the model correspond to efficient
plans, where the requirements on the plan are satisfied. They do consider an even flow of
assortments and the age of logs better than manual plans.

The contributions of this model with respect to earlier work are that this model is detailed and
integrates decisions about harvesting, scheduling of harvest crews, transportation, and detailed
storage. The model requires information that now is available from customer databases. The
resulting mixed integer linear problem is very large. By using a commercial solver it is possible to
solve the problem within a practical time limit with a limited number of sequences. We note that it
is the optimal solution of a restricted problem as all possible schedules is not included. A
developed heuristic provides high-quality solutions within less than half the solution time
obtained by the commercial solver. This can be reduced significantly by moving from the general
modelling language AMPL to, e.g., a C-implementation.
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It is of further interest to include more schedules and to develop the heuristic to guarantee
feasible solutions. One approach would be to use branch and price where a subproblem can be
solved in order to generate new columns in the branch-and-bound tree. This is likely to be a
constrained shortest path problem similar to those obtained in, e.g., airline crew scheduling.
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