

METHODOLOGY FOR CREW-PAIRING PROBLEM IN AIRLINE CREW

SCHEDULING

by

Uğur Özdemir

B.S., Computer Science Engineering, Marmara University, 2004

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in System and Control Engineering

Boğaziçi University

2009

ii

METHODOLOGY FOR CREW-PAIRING PROBLEM IN AIRLINE CREW

SCHEDULING

APPROVED BY:

 Assoc. Prof. Tunga Güngör

 (Thesis Supervisor)

 Prof. Ahmet Ademoğlu

 Dr. Tamer Şıkoğlu

DATE OF APPROVAL: 27.01.2009

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Tamer Şıkoğlu for his invaluable

guidance and help during the preparation of this dissertation. I would like to mention his

patience, giving me inspiration and hope when I was stuck at dead-ends.

I would like to thank to my family and my friend Engin Akar for their endless support and

help.

iv

ABSTRACT

METHODOLOGY FOR CREW-PAIRING PROBLEM IN AIRLINE

CREW SCHEDULING

Crew scheduling problem is divided into two sub problems, crew pairing and crew

assignment problems. In literature, there are many studies on crew pairing problem and in

this study also main subject is crew pairing problem. In this thesis, previous work on crew

pairing problem is investigated and a hybrid method is developed by combining previous

methods.

In this study, the mathematical representation of the crew pairing problem is

explained. Basically, the problem is represented as integer programming problem but to

reduce the complexity it is relaxed to linear programming (LP) problem. Most well-known

method for solving large size of LP is sprint method. Also in previous studies, another

method which is called dynamic pairing generation is developed. Commonly for finding

integer values after solving LP, branch and bound or branch on follow-on method is used.

Also, Carmen algorithm is another method for getting integer values after finding LP

solution. In hybrid method, for solving LP problem sprint method is used. For finding

integer values, after solving LP problem Carmen algorithm is implemented. Experiments

show that Carmen algorithm is very fast but it gives bad results. Therefore, another version

of hybrid method is implemented which also starts with sprint method and uses branch on

follow-on method to find integer solutions. In the last section, the comparison of the test

results between Carmen algorithm and branch on follow-on method is given. As a

conclusion a brief summary on hybrid method is explained and for future work is given.

v

ÖZET

HAVAYOLU MÜRETTEBAT ZAMAN ÇİZELGESİNDE UÇUŞ

DİZİSİ BULMA PROBLEMİ İÇİN METODOLOJİ

Mürettebat zaman çizelgesi problemi iki alt probleme bölünür, uçuş dizisi bulma

problemi ve mürettebat atama problemi. Literatürde uçuş dizisi bulma problemi üzerinde

çok çalışma vardır ve bu çalışmanın da ana konusu budur. Bu çalışmada önceki metotlar

incelenerek hibrid bir metod geliştirilmiştir.

Bu çalışmada uçuş dizisi bulma probleminin matematiksel ifade ediliş şekli

açıklandı. Temel olarak problem tamsayı programlama problemi şeklinde ifade edilir fakat

problemdeki karmaşıklığı azaltmak için doğrusal programlama problemine çevriliyor.

Doğrusal programlama problemlerini çözmek için kullanılan en iyi bilinen metot Sprint

methodudur. Ayrıca önceki çalışmalarda adı dinamik uçuş dizisi üreten olan bir metot

geliştirildi. Genellikle doğrusal programlama problemi çözüldükten sonra tamsayı

değerleri bulmak için parçala ve sınırla veya art arda uçuşlara göre parçala yöntemi

kullanılıyor. Ayrıca doğrusal programlama problemini çözdükten sonra tamsayı değerleri

bulmak için kullanılan diğer bir metot da Carmen algorithmasıdır. Hibrid metotda doğrusal

programlama problemini çözmek için Sprint metodu kullanıldı. Doğrusal programlama

problemi çözüldükten sonra tamsayı değerleri bulmak için Carmen algorithması uygulandı.

Deneyler gösterdiki Carmen algoritması çok hızlı fakat çok kötü sonuçlar veriyor. Bu

nedenle yine Sprint metodu ile başlayan ve tamsayı değerler bulmak için art arda uçuşlara

göre parçala yöntemini kullanan bir başka hibrid versiyonu uygulandı. En son kısımda

Carmen algoritması ile art arda uçuşlara göre parçala yönteminin deneylerde çıkan

sonuçlarının karşılşatırması verildi. Sonuç olarak ise hibrid metodunun kısa bir özeti

açıklandı ve gelecekte yapılabilecek çalışmalar verildi.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS..iii

ABSTRACT... iv

ÖZET.. v

LIST OF FIGURES... vii

LIST OF TABLES ...viii

1. INTRODUCTION.. 1

2. PROBLEM DESCRIPTION.. 3

2.1. The Restriction Rules on Pairings .. 6

2.2. Dual Variables and Reduced Cost .. 7

3. PREVIOUS WORK ... 10

3.1. Pairing Generation ... 10

3.2. Solving LP Problem... 11

3.2.1. Sprint Method ... 11

3.2.2. A Heuristic Approach for the Airline Crew Pairing Problem 13

3.3. Finding Integer Solution .. 17

3.3.1. Branch and Bound Algorithm.. 17

3.3.2. Branch on Follow-ons Method .. 21

3.3.3. Carmen Algorithm .. 24

4. HYBRID METHOD... 27

4.1. Usage Areas of Hybrid Method... 31

5. EXPERIMENTS .. 32

6. CONCLUSION .. 35

APPENDIX A: DATA USED IN EXPERIMENTS... 36

REFERENCES.. 38

vii

LIST OF FIGURES

Figure 2.1 A sample example for crew pairing problem [1] .. 6

Figure 3.1 A sample flight tree for flight 1.. 10

Figure 3.2 Selection process in Sprint method [2] ... 12

Figure 3.3 A sample flight network [3] ... 14

Figure 3.4 A sample duty network [3]... 15

Figure 3.5 Overall algorithm of the dynamic pairing generation and pricing step [3]..... 16

Figure 3.6 First branching tree .. 18

Figure 3.7 Second branching tree.. 19

Figure 3.8 Third branching tree .. 20

Figure 3.9 A sample branching tree for branch on follow-on method 22

Figure 4.1 The overall algorithm of the hybrid method ... 30

viii

LIST OF TABLES

Table 2.1 The model with the values .. 5

Table 3.1 Pseudocode for the recursive method for flight tree... 11

Table 3.2 Pseudocode of the Sprint method .. 13

Table 3.3 Pseudocode of the branch on follow-on method .. 23

Table 3.4 Pseudo code of Carmen algorithm... 26

Table 4.1 The differences between Sprint and Dynamic Pairing Generation method....... 28

Table 4.2 The run time of the methods for various numbers of flights [3] [5].................. 29

Table 5.1 The used values in experiments... 32

Table 5.2 The comparison between Carmen algorithm and branch on follow-on method 33

Table 5.3 The comparison between hybrid method and original Carmen algorithm......... 34

Table A.1 The sample timetable for 38 flights [6].. 36

Table A.2 The sample timetable for 58 flights [6].. 36

Table A.3 The sample timetable for 96 flights [6].. 37

1

 1. INTRODUCTION

In airline industry, there are many planning problems at strategic, tactical and

operational levels. Airlines spend incredible amount of money on researching and

resolving these kinds of problems. Most common research area is Operation Research

(OR) techniques. They apply these techniques to their planning problems and try to resolve

them by representing problem as mathematical optimization. The main idea on working on

these problems is of course in order to decrease their cost and increase their market share.

There are four common steps in the airline planning process. These are timetable, fleet

assignment, crew pairing and crew assignment.

• Timetable: First a timetable is created. In the timetable, flights are scheduled based

on market demands and competitive analysis. As air traffic is increasing, allocation

of time slots is difficult task to do.

• Fleet Scheduling: With given timetable, aircrafts are assigned to the flights. There

are several types of aircrafts in airlines and aircrafts are divided into separate fleets

depending on aircraft type. Aircraft maintenance and service is the most important

task in this step. Also aircrafts visit maintenance depot for checkup and service

within regular periods.

• Crew Pairing: When the timetable is constructed and aircrafts are assigned to the

flights next step is considering crews. Typically a crew is composed of a pilot, co-

pilot and a number of flight attendants. For every type of aircraft there are different

numbers of crews for each flight. A crew pairing is one or several days long and

they should be checked based on rules and regulations. In this step crew pairings

are selected such that they should cover all the flights to be planned.

• Crew Assignment: In this step, crews are assigned to given pairings. Most airlines

use a kind of bidding system to assign pairings to crews. It is a complicated step

and based on strict seniority. It can also include an optimization step where the

2

objective is some kind of total “fairness”. Also there are crews to be a backup for

other crews in case of illness or other disruptions to the schedule.

Generally, a crew scheduling problem is divided into two problems one is crew

pairing and the other one is crew assignment. First crew pairing problem is solved and

good pairings are found by giving flight schedule (timetable) as an input. After solving

crew pairing problem, crews are assigned to these pairings. To get a good final solution the

input data (crew pairings) has to have a good quality. Good quality of input data does not

imply good outcome but with bad input data feasible solution is impossible. That is why

crew pairing is the most important step and saves more money in crew scheduling

problem. In literature, there are many studies on crew pairing problem. In this study also

after investigating previous studies, a hybrid method is developed for finding best crew

pairings.

In section 1 crew pairing problem is described and its mathematical model is given.

In section 2, restriction rules on pairings and a few mathematical concepts is presented. In

section 3 first the algorithm for pairing generation is given and then previous methods are

explained and a few examples are shown. In the next section hybrid method is explained

and its advantages and disadvantages are presented. In the experiments section, observed

experiment results are given. In section 5, a summary on hybrid and previous methods is

presented.

3

2. PROBLEM DESCRIPTION

Before explaining the problem a few definitions should be given. A flight leg or

segment is a single nonstop flight. A duty period - mostly a working day of a crew -

consists of a sequence of flight legs with short rest periods or sits separating them. Also the

duty starts with a brief period and ends with a debrief period. A pairing is a sequence of

duties and each pairing begins and ends at the same crew base. In a pairing there is an

overnight rest between each duty. Crew base is a city where crews are stationed. To

reposition a crew from one base to another base, a pairing might include crews as

passengers and this kind of flight is called deadhead. Generally deadheads are used to

transport a crew where they are needed to cover a flight or to return to their home base.

Typically, the given timetable which is generally schedule of a month to the crew

pairing problem can contain daily, weekly and monthly flights. The crew pairing problem

can also be defined as daily, weekly and monthly (transition) problem to handle all kinds

of flights in timetable. The daily problem assumes that all flights are flown every day.

Every pairing is flown by a different crew and it starts each day of the week. Also in daily

problem, a flight can not appear more than once in a pairing. To consider flights that are

not operating every day of the week, modified version of daily problem is used and it is

called weekly (exceptions) problem. There are also other flights different than daily and

weekly flights in monthly schedule. Airlines might modify some of the flights that were

already in the timetable. In this case, transition (monthly) problem is used to find crew

schedule for covering flights during a transition between old and new flight schedule. In

this study, only daily problem will be considered.

In the crew pairing problem the objective is finding a set of pairings from all possible

pairings. While selecting pairings all flights must be covered exactly once and cost of the

all selected pairings should be kept in the minimum. Also selected pairings should be legal

according to the specified regulations. When we model this optimization it can be

considered as an integer programming problem. Pairings are the variables of the problem

and they can only get values 0 (not selected) or 1 (selected). Cost of the pairings is the

4

coefficient of the variables and covering flights exactly once represents the constraints of

the optimization. Therefore,

 Minimize ∑
∈Pj

jj xc (2.1)

 subject to ∈x j
 {0, 1} for all j ∈ P

 ∑
∈

=

P
i

j

jx 1 for all i ∈ F

where F is the set of all flights, P is the set of all possible pairings, for each i ∈ F, Pi

is the set of pairings which cover the flight i, cj is the cost of the pairing j ∈ P. Let A = {aij

: i ∈ F, j ∈ P} denote the binary matrix where each row represents a flight leg and each

column represents a pairing, aij = 1 if the flight leg i is covered by pairing j, and 0

otherwise. xj is a binary variable assuming a value of 1 if pairing j is selected and 0

otherwise. The objective is to minimize the total cost of selected pairings. The set of

equality constraints guarantees that each flight is covered only once. Here is a simple

example for this optimization.

Consider the following flights;

Flight 1: City A – City B 08:00 – 09:00

Flight 2: City B – City C 10:00 – 11:00

Flight 3: City C – City D 13:00 – 14:00

Flight 4: City C – City A 07:00 – 08:00

Flight 5: City D – City A 07:00 – 08:00

Flight 6: City A – City B 17:00 – 18:00

Flight 7: City B – City C 11:00 – 12:00

And suppose the pairings are

P1 = {F1 F2 F4} and c1 = 4

P2 = {F1 F3 F5 F7} and c2 = 4

P3 = {F2 F3 F5 F6} and c3 = 4

5

P4 = {F4 F6 F7} and c4 = 4

P5 = {F7 F4 F7} and c5 = 5

When we put the values to the model;

Table 2.1 The model with the values

An integer programming problem is a NP-hard but many methods are developed to

solve these kinds of problems. A few examples to them are branch and bound method,

branch and cut method and branch and price method. Since there many millions of

variables, applying these methods directly to crew pairing problem are not the efficient

way. Mostly an intermediate step is built up to select best variables first then these methods

are applied to find integer values. The intermediate step is relaxing the integer

programming problem to the linear programming problem and solving it. That is, IP

problem is transformed to the LP problem. Considering crew pairing problem with this

transformation, xj = 0 or 1 is relaxed to 0 ≤ xj ≤ 1 and therefore xj values can be fractional

which means that a flight segment may be covered by fractional values of two or more

pairings.

 Minimize ∑
∈Pj

jj xc (2.2)

 subject to 0 ≤ xj ≤ 1 for all j ∈ P

 Ax = 1

With this relaxation, xj takes fractional values but in practice it is unusable. So to

find integer solution, after solving linear programming problem, special version of the

min 4x1 + 4x2 + 4x3 + 4x4 + 5x5

 x1 + x2 + x5 = 1 (flight 1)

 x1 + x3 = 1 (flight 2)

 x2 + x3 = 1 (flight 3)

 x1 + x4 + x5 = 1 (flight 4)

 x2 + x3 = 1 (flight 5)

 x3 + x4 = 1 (flight 6)

 x2 + x4 + x5 = 1 (flight 7)

A will be

11010

01100

00110

11001

00110

00101

10011

6

branch and bound method which is branch on follow-ons method is used. In figure 2.1,

another very small example for pairing problem is shown.

Figure 2.1 A sample example for crew pairing problem [1]

2.1. The Restriction Rules on Pairings

The FAA, operational considerations, and contractual restrictions define the structure

and cost of legal duty periods and pairings.

Safety considerations set down some rules like maxsit and minsit, which define

maximum and minimum sitting times between flight segments within duty times. The

elapsed time of a duty period called elapse. The brief and debrief periods are included in

7

elapse and elapse time cannot be greater than maxelapse value. In a duty period, fly, the

total number of hours of actual flying time, must be less than maxfly time which is a

maximum value. The maximum value of mg1 (minimum number of hours), f1 (fraction)

times the elapsed time of duty, and the actual flying time is defined as the cost structure for

duty periods (bd). And it can be expressed as;

 bd = max { mg1, f1 * elapse, fly }. (2.3)

Typical values for domestic flights of the defined rules are given below. Also in some

cases these values can be changed. Maxsit = 4 hours, minsit = 0.5 hours, maxelapse = 12

hours, maxfly = 8 hours, mg1 = 3 hours, and f1 = 4/7.

Legal pairings may be composed of up to a maximum number of duty periods called

maxduties and minimum number of hours of rest between duties called minrest. After long

maxfly or inadequate minrest, compensotory rest can be given. The maximum value of mg2

(minimum guarantee) times NDP (times the number of duties in pairing), f2 (fraction)

times the total elapsed time of the pairing (TAFB) and the sum of the cost of the individual

duties gives the cost of a pairing.

 cp = max{NDP * mg2, f2 * TAFB, Σd€p bd } (2.4)

Typical values are maxduties = 2, mg2 = 4.75 hours, f2 = 2/7 hours. There are also

other obligations other than pairing and duty rules like crew base constraints. For every

crew base, there is a different value of the total amount of flying hours that is assigned to

the crew. With this rule, it is ensured that crews at the various bases will all have

approximately the same number of flight hours for each work month. In this study this rule

will not be considered.

2.2. Dual Variables and Reduced Cost

Before explaining previous methods that were used to solve crew pairing problem, a

few mathematical concepts should be clarified. These are not the main purpose of this

8

study but to clearly understand previously applied methods a brief definition should be

specified.

When considering the complexity of an optimization problem, constraints are playing

an important role in solving an optimization problem. Without constraints an optimization

problem is easy to solve. A method called Lagrangian relaxation is developed to simplify

optimization problems by moving constraints to the objective function.

 min cx (2.5)

 Ax = b

 becomes

 min cx + y(b -Ax) (2.6)

where y values are the lagrangian multipliers of the lagrangian function. One of the

mathematical concepts that will be mentioned through this study is the dual variable also

known as the shadow price. Dual variable represents the "cost" of having a constraint in

the optimization model and it is associated with each constraint. If a constraint is removed

from the optimization problem, the optimum value will be improved based on the value of

the dual variable of that constraint. More formally, the dual variable is the Lagrange

multiplier at the optimal solution which means that if there is a small change in a

constraint, it will cause a small change in the optimum solution. Also, with lagrangian

function, if a constraint is not satisfied, the penalty can be implied into the objective value.

By using dual variables, reduced cost of a variable can be calculated and this is the

main purpose of finding dual values in crew pairing problem. Reduced cost is the value

that if a variable whose value is currently 0 is forced to be part of the solution (set to 1), the

optimum value will be changed by the amount of the reduced cost of that variable. For

example if there is a minimization problem, let xj is equal to 0 and its reduced cost is

negative. If xj is forced to be 1 meaning to be the part of the solution, the optimum value

will decrease (improve) by the amount of the reduced cost value of the variable. For

minimization problem if a reduced cost is positive, optimum value will be increased

9

(worsened). If the reduced cost is zero, deciding if that variable should be included into the

solution or not is impossible. Reduced cost can be calculated as;

 c – yaj (2.7)

where c is the coefficient of the variable, y is the row vector of the dual variables and

aj is the jth column of the A matrix.

Consider the example given in section Problem Description without the fifth pairing,

if it is solved with LP solver the objective value is 8 and the variables will be x1 = 0. 5, x2

= 0. 5, x3 = 0.5 and x4 = 0. 5. Also for constraint 3 and 4 dual variables will be 4 and for

others it will be 0. The zero dual variables mean that there will be no change in the

objective even after changing or removing the corresponding constraints. When we

calculate the reduced cost with given formula reduced cost for fifth pairing will be 1. This

means that if it is included into the problem, the objective value will be increased by 1.

After setting fifth variable to 1, it is seen that the objective value is 9 and the values are x3

= 1 and x5 = 1. Actually in this example the optimum value is increased but integer

solution is obtained. In this example, the effect of using reduced cost to determine which

pairing should be included into the problem is shown.

10

3. PREVIOUS WORK

3.1. Pairing Generation

In pairing generation stage, first all possible duty periods are generated and after

generation of duties, all possible pairings are generated by combining these duties. In duty

generation for each flight segment, a tree is constructed whose root node represents that

flight segment. The root node has children that represent every possible connecting flight

segments. At each successive level in the tree, each node has a child for every possible

connection. The depth of the tree can be determined by the maximum allowable number of

flights in a duty. With depth-first-search approach, visiting every node of the tree all

possible duty periods are found. Each path from the root node to any of its descendants

(including only itself) in the tree represents a duty period. Possible duty periods are first

checked to ensure that they are legal based on the legality restrictions. If a duty is legal its

cost is also calculated. A sample flight tree for flight 1 in the example 1 is in the figure 3.1.

Figure 3.1 A sample flight tree for flight 1

Pairings can also be found by following the same procedure. In this case tree is

constructed for all duty and duty periods are represented as nodes in the tree. Also again all

possible pairings are checked not to violate regulation rules but only the rules that can not

be applied to duties because all applicable rules are already checked while generation of

duties. One of the examples to those rules is that a pairing should starts and ends at the

1

2 7

4 3 4 3

Duty 1: F1, F2, F3

Duty 2: F1, F2, F4

•

•

•

11

same crew base. Also a pairing should not contain a flight twice so any duty can not be

followed by another duty that has the same flight with the first one. If a pairing is legal

then its cost is also calculated with given formula (2.4).

A recursive method is implemented for finding child nodes in the flight and the duty

trees. The table 3.1 shows the pseudocode for the recursive method for flight tree;

Table 3.1 Pseudocode for the recursive method for flight tree

3.2. Solving LP Problem

3.2.1. Sprint Method

The SPRINT method has been introduced by J. Forrest and was described in [2]. It is

a successful method for large scale crew scheduling LP’s. The main approach on this

method is finding optimal solution of a large scale LP by solving small subset of LP’s

iteratively.

In sprint method, first all possible pairings are generated (most of the time there are

many millions of pairings). Since solving all of these pairings at one time is impossible,

iteratively a bunch of pairings (usually 5000) are selected and solved. The iteration first

Step 1: For all flights

Step 2: Set flight as root node

Step 3: Find child nodes

do

 if it is a possible connection

 Add flight as a child node

 Find child nodes of the child node (go to step 3)

Enddo

Step 4: Stop. After visiting every flight tree is constructed.

12

begins with generating an initial solution. By using initial optimum dual variables, all

reduced cost of the pairings is calculated and based on their reduced costs pairings are

selected to be included into the next sub problem. The idea behind using reduced cost is

that if the pairing that has smaller negative reduced cost is included into the problem, the

objective value will be improved (reducing the cost). Therefore, the parings that has

smaller negative reduced cost have highest priority to be selected. The important factor in

here is that pairings are selected over all of the pairings every time a new sub problem is

created. In the next iteration, selected small subset is solved and again by using new dual

variables reduced cost is calculated to be used in the next iteration. The iteration ends when

there is no negative reduced cost pairing exists.

Figure 3.2 Selection process in Sprint method [2]

In pairing selection process, first all pairings are divided into “buckets” based on

their reduced costs. New sub problem is filled up by selecting from the best buckets first.

But if the required number of pairings is exceeded, pairings are selected from other buckets

randomly. The next subset of columns consists of, the current optimal basis, pairing

(columns) in the best “bucket” and a random selection of columns from the other buckets.

In figure 3.2 a sample selection process is shown.

13

Since remarkable small number of sub problems is solved in order to achieve

globally optimum value for large problems, sprint method has better performance than

other methods. Even for large scale problems i.e. 5.5 million pairings only 25 sub problems

are solved [2]. If 5000 pairings are chosen, only 25 x 5000 columns out of 5.5 million are

used for solving the global problem [2]. Also since only 5000 columns are selected at each

iteration, sub problems are solved relatively quickly. The pseudo code of the sprint method

is in table 3.2.

Table 3.2 Pseudocode of the Sprint method

3.2.2. A Heuristic Approach for the Airline Crew Pairing Problem

In this method, pairing generation and solving the problem is not separated strictly as

in sprint method. First a set of pairings are generated and this small subset is solved. If the

there is no feasible solution for this sub problem artificial pairings with high cost are used.

The dual values from the optimum solution to this small subset are then used to generate

more pairings and generated subset is solved again. The iteration continues until finding an

optimum solution. Solving these sub problems is named as restricted master problem

(RMP).

For pairing generation, first a structured network is constructed using flights or

duties. From constructed network, by solving constrained shortest path problem new

Step 1: Find and initial solution.

Step 2: Using initial dual variables calculate reduced cost

Step 3: Generate a sub problem by selecting pairings based on their

reduced costs

Step 4: Solve the sub problem.

Step 5: Calculate reduced costs

Step 6: If there is no negative reduced cost

 Stop. Optimal solution is found for LP problem.

Step 7: Else go to Step3

14

pairings are generated. There are two types of networks that is used in the literature, one is

flight network and the other one is duty network.

In a flight network, one type of arc represents each flight and the other type of arc

represents the legal connection between flights. Also there are two types of nodes, one is

source or destination of the flight and the other one is the sinks where pairings either start

or end. A sample flight network is shown in figure 3.3.

Figure 3.3 A sample flight network [3]

For daily problems, each flight is replicated as many times as the calendar allows. If

it is weekly problem, each flight is replicated twice so that pairings that cross over from the

end of the week (from Sunday to Monday) can be generated. As shown in the figure, the

source node is connected to the departure node of each flight if it is the specified crew base

and also the arrival node of the each flight is connected to the sink node if it ends at the

specified crew base. Also each arc contains additional attributes to use in calculation of

15

cost or checking legality of a pairing. These attributes are arrival, departure and flying time

of a flight and dual values of the current LP solution to the restricted master problem.

The duty network has the same types of arcs and nodes and also it is constructed by

using the same rules and attributes in flight network. A sample duty network is shown in

figure 3.4.

Figure 3.4 A sample duty network [3]

In flight and duty networks all paths represent a possible pairing. Since there many

possible paths in the networks, an “intelligent” way are used to determine which pairings

should be chosen for constructing a sub problem. The important factor behind this idea is

generating pairings such that which can reduce the overall cost of the problem. This

algorithm is called pricing step. In this step, dual values of the LP solution to previous sub

problem is used to calculate reduced cost of all candidate pairings and based on the

reduced cost, pairings are selected. The pairings that have negative reduced cost have

16

higher priority than others to be selected (priced-out). Because as described in section 2.2,

if the pairing has negative reduced cost, including that pairing into the problem will reduce

the overall cost. Also besides considering the reduced cost, shortest path algorithm is used

in networks to find pairings which have lower cost. An overall algorithm of the dynamic

pairing generation and pricing step is shown in figure 3.5.

Figure 3.5 Overall algorithm of the dynamic pairing generation and pricing step [3]

17

3.3. Finding Integer Solution

Since the optimum xj values are fractional, it is not practical to use them directly.

After finding fractional values by solving LP problem, these values should be converted

into integer values to be more useful for real world problems. Simply rounding-up the

values to integer might be a solution but for large size problem most of the time it fails.

Most common algorithms for solving integer linear programming problems are branch and

bound, branch and cut and branch and price methods. In this section branch and bound

algorithm and slightly changed version of it will be explained. Also another method which

is an algorithm for solving large size integer programming problems will be presented.

3.3.1. Branch and Bound Algorithm

Branch and bound is simply a search method. The algorithm searches the complete

space of solutions for a given problem for the best solution. First, the algorithm tries to find

an optimum solution by considering the original problem with the complete feasible region

which is called the root problem. If the optimum solution could not be found, the feasible

region is divided into two or more regions and all sub regions should cover the whole

feasible region of the original. These sub regions represent the sub problems of the root

problem and become the children of the root search node. The algorithm is applied

recursively to the sub problems by generating a tree of sub problems. If an optimum

solution is found to a sub problem it is feasible solution to the root problem but not

necessarily globally optimal. Dividing original problem to sub problems is called

branching and generated tree from sub problems is called branching tree. For large size of

problems, branching tree can be huge and hence it is impossible to solve all sub problems

in a sequence. Therefore bounding step is used not to solve all of the sub problems. In the

bounding step the optimum solution of sub problem can be used to prune the tree. If the

lower bound for a sub problem (node) exceeds the best known feasible solution, it can be

removed from consideration because no globally optimal solution can exist in the subspace

of the feasible region represented by the sub problem (node).

18

For better understanding here is an example for branch and bound method. Let the

problem is

Maximize 8x1 + 11x2 + 6x3 + 4x4

subject to 5x1 + 7x2 + 4x3 + 3x4 ≤ 14

 xj ∈ {0, 1} j = 1, … 4.

The linear relaxation solution is x1 = 1, x2 = 1, x3 = 0.5, x4 = 0 with the objective

value of 22. Since x3 is not integer, the solution is not integer. To force x3 to be integer, we

branch on x3 by creating two new sub problems. In one, x3 = 0 constraint is added and in

the other one x3 = 1 constraint is added. Figure 3.6 shows the branching tree

Figure 3.6 First branching tree

For x3 = 0 objective value is 21.65 and values are x1 = 1, x2 = 1, x3 = 0, x4 = 0.667;

For x3 = 1 objective value is 21.85 and values are x1 = 1, x2 = 0.714, x3 = 1, x4 = 0;

At this point we have two possible paths to find the integer solution. While choosing

the sub problem, in general the following rules are taken into account

• Choose one that have not been chosen before

• Choose the sub problem with the best solution value (highest for maximization and

the lowest for minimization problems).

Fractional

Z = 22

x3 = 0

Fractional

Z = 21.65

x3 = 1

Fractional

Z = 21.85

19

So, we choose sub problem with x3 = 1 and branch on x2. After solving sub problems, the

branching tree can be seen in figure 3.7

Figure 3.7 Second branching tree

For x3 = 1, x2 = 0 the objective value is 18 and values are x1 = 1, x2 = 0, x3 = 1, x4 = 1;

For x3 = 1, x2 = 1 the objective value is 21.8 and values are x1 = 0.6, x2 = 1, x3 = 1, x4 = 0;

We now have a feasible solution with value 18 for x3 = 1, x2 = 0. But there are still

sub problems to be solved. So for x3 = 1, x2 = 1, we branch on x1 and the figure 3.8 shows

branching tree

Fractional

Z = 22

x3 = 0

Fractional

Z = 21.65

x3 = 1

Fractional

Z = 21.85

x3 = 1, x2 = 0

Integer

Z = 18

INTEGER

x3 = 1, x2 = 1

Fractional

Z = 21.8

20

Figure 3.8 Third branching tree

For x3 = 1, x2 = 1, x1 = 0 objective value is 21 and values are x1 = 0, x2 = 1, x3 = 1, x4 = 1;

For x3 = 1, x2 = 1, x1 = 1 it is infeasible.

Our best integer solution now has value 21 and it is the lower bound of the problem.

But we still have sub problem to be solved. It is the sub problem with the solution value

21.65 that was found in the first branching. But branching on this node will not give an

Fractional

Z = 22

x3 = 0

Fractional

Z = 21.65

x3 = 1

Fractional

Z = 21.85

x3 = 1, x2 = 0

Integer

Z = 18

INTEGER

x3 = 1, x2 = 1

Fractional

Z = 21.8

x3 = 1, x2 = 1, x1 = 0

Integer

Z = 21

INTEGER

x3 = 1, x2 = 1, x1 = 1

Infeasible

INFEASIBLE

21

optimum value bigger than 21 so this node is completely discarded based on the bounding

argument.

3.3.2. Branch on Follow-ons Method

In the previous section the standard rule of branching is explained. Simply x values

are fixed to 0 or 1 to divide original problem to sub problems. However, applying standard

branching rule to crew pairing problem is difficult to implement and the problem

converges very slowly because there many millions of possibilities for all pairings (x

values). Therefore, another branching rule that was developed by Ryan and Foster [4] is

used. This rule is applied after finding fractional solution to the LP relaxation of the set

partitioning problem. In this rule, if one pairing contains both of flights r and s, there must

exist another pairing that contains only one of the two flights. With this fact, a general

branching rule can be constituted that on one branch two flights r and s are covered by the

same pairing and by different pairings on the other branch. In general, forcing two specific

flights either to appear in only one pairing (first branch) or to never appear in the same

pairing (second branch) is difficult. However, forcing two flights to appear consecutively

in a pairing or not is an easy task to do. So, the original rule is slightly changed. If two

specific flights satisfies the Ryan and Foster rule and they appear consecutively in at least

one of the fractional pairings that contains them both, then we can branch by forcing two

specific flights to appear consecutively in the pairing for constructing one of the branching

node and forcing them to never appear consecutively in any pairings in the solution for

constructing the other branching node. A sample branching tree is shown in figure 3.9. The

explained strategy is called branch on follow-ons because flights are forced to appear

consecutively or not.

22

Figure 3.9 A sample branching tree for branch on follow-on method

In figure 3.9, in first branch node that is forcing two flights r and s to appear

consecutively in pairings, any pairing that contains flight r and/or s but not appearing

consecutively are removed from the root problem. In the second branch that is forcing two

flights to never appear consecutively in any pairings, any pairing that contains flight r and s

and they appear consecutively is removed from the root problem. In both nodes, a set of

pairings are removed from the root problem that is, xj values of these pairings are fixed to

0.

In branch on follow-ons method, first follow-on pair is determined that will be

branched on and then which part of the branch tree to search next is decided. In general,

there are many follow-on pairs in a fractional LP solution. So there needs to be a strategy

to decide to which follow-on pair should be selected to be branched on. The strategy is to

compare the values of all possible follow-ons that can be calculated by the following

formula.

 f(r,s) = ∑
∈ P sr
j

jx
,

 (3.1)

Fractional values for xj’s.
Z = 61.53

Force two flights r and s to
appear consecutively in
pairings.

Z = 65.46

Force two flights to never
appear consecutively in any
pairings.

Z = 72.38

There are two
flights r and s in
pairings.

First Branch Node Second Branch Node

23

where Pr,s is a set of pairings that contains flights r and s consecutively. If the value

of f(r,s) for flight r and s is the highest value, this follow-on has the highest priority to be

selected.

First follow-on pairs that have f(r,s) = 1 is fixed and then from the remaining paths,

the follow-on pair r,s which has the highest value of f(r,s) but not equal to 1 is fixed. The

main idea behind the fixing follow-on is to force it to be appearing consecutively in

pairings. Experiments show that searching in the branching tree on the side of the tree

where follow-on is fixed gives better solution than on the side where forcing follow-ons

not to be appeared consecutively any pairing. In this study also, the branching tree on the

side of the tree is searched where follow-on is fixed. The table 3.3 shows the full pseudo-

code of the branch on follow-on method.

Table 3.3 Pseudocode of the branch on follow-on method

Step 1: Solve LP and find xj values

Step 2: Select a bunch of pairings (10000 or 15000) based on their

reduced cost from all pairings.

Step 3: Find the best follow-on based on xj values

Step 4: Create the branch

Step 4: Fix the best follow-on. Remove pairings that does not

contain the best follow-on.

Step 5: If the size of the root problem is too small select more

pairings.

Step 6: First select pairings that contain follow-on flights.

Step 7: If still it is not enough then select pairings that does

not contain both follow-on flights

Step 8: Solve the branch.

Step 9: If it is integer stop. If it is not go to step 4.

24

3.3.3. Carmen Algorithm

In common solution methods for integer programming (IP) problems, first IP

problem is relaxed to LP problem as described in the Sprint method. If LP problem gives

integer solution then IP solution is found but if it can not give integer solution, other

methods like branch and bound algorithm is used. In this algorithm unlike to common

methods, it does not use the solution of the LP problem as an intermediate step instead it

finds the integer solution in a more direct way. The main idea behind this algorithm is that

it uses dual values and reduced cost to find integer x values.

In this method first IP problem is reformulated as an unconstrained nonlinear

problem by using lagrangian relaxation (R) as shown in (3.2).

 min cx + y(b -Ax) (3.2)

where c is the reduced cost vector of the variables. Any x values that feasible for IP

problem is also feasible for R problem. So if x values are found for R, the solution can also

be considered as the feasible solution for IP problem. But solving R is trivial, so instead

some vector of y is found and for fixed vector of y, the solution in x is written as

 1 if c i < 0,

 xj = 0 if c i > 0, (3.3)

 0 or 1 if c i = 0,

As shown in the expression, if c is nonzero the solution is integer and unique but if

not, then it is difficult to find an integer solution. For most of the problems especially for

large size problems, it is almost difficult to find nonzero c values. Therefore, a simple

coordinate search method is applied to every element of y to find nonzero c values.

In the simple coordinate search, iteratively yi values are found that the solution x to R

satisfies the constraint i of Ax=b. For every row i, a c
i is written as the elements of c and

also another array ri is written as,

25

 r
i = c

i + yi (3.4)

The aim of finding ri is to cancel out the effect of the previous value of yi from the

c vector. By using the elements of the ri the new value of the yi is found. Let −r be the

lowest element of the ri and +r be the second lowest element of the ri vector. Then the yi is

written as

 yi =
2

+−
+ rr

 (3.5)

If −r and +r are nonzero after update c vector with the new value of yi, only one

element of the c will be negative. In here updating c vector means that every element of

the ri is subtracted by exactly the new yi value. Also since the average value of the two

lowest elements is between the two values, after subtracting the average value the lowest

element of the r
i will become negative and the others will be positive. Therefore, the

corresponding xj variable of the negative reduced cost is considered as 1 and added to

integer solution. For every y value exactly one xj value is found and after iterating through

every y values which is called row-wise update of reduced cost, an integer solution can be

found.

If −r and +r values are zero or equal to each other then after calculating c vector

with the new yi value, there will be still zero values in the c vector. If this is the case, one

of the zero values in the c vector is chosen randomly to be set as negative and the

corresponding xj variable will be set to 1.

The full pseudo code of the algorithm is shown in table 3.4

26

Table 3.4 Pseudo code of Carmen algorithm

Step 1: For every i, find yi values

Step 2: Find ri vector, ri = c
i + yi

Step 3: Select −r and +r

Step 4: Find new value of yi

Step 5: Calculate the c vector with the new value

Step 6: The corresponding xj variable of the negative

reduced cost (yi) is added to integer solution.

 Step 7: After finding all yi values stop.

27

4. HYBRID METHOD

As explained in previous section there are many methods for solving crew pairing

problem and every method has its own advantages and disadvantages. One can select one

of them to solve crew pairing problem by looking at its advantages and disadvantages. In

this section, a hybrid method which is developed by combining some of these methods is

explained. The main purpose of developing a hybrid method is finding better solutions and

finding it in a more rapid way than the other methods.

In hybrid method for solving LP problem sprint method is used. After solving LP to

find integer problems Carmen algorithm is used. Carmen algorithm solves the problem

rapidly but it does not give good results. Therefore, for finding integer solution another

method (branch on follow-ons) is also combined with sprint method.

First all possible pairings are generated as described in section 3.1. The main reason

generating all pairing is that it is also the first step of the sprint method. From all possible

pairings, a small amount of them are chosen randomly and solved to find an initial

solution. The important thing in here is that the chosen pairings must contain all flights

because without containing all flights there will not be a feasible solution. A simple

heuristic method is used to cover all flights in selected initial pairings. In pairing

generation phase, duties and pairings are generated in an order. For example in duties list,

most probably first duties contain first flight and last duties contain last flight. In pairing

list the same logic exists such that first pairings contain first duty and also contain first

flight. So pairing list is divided into small subsets as much as the flight size. From all

subsets randomly pairings are chosen. Hence this heuristics provide us to find initial

pairings which cover all flights. After finding initial solution, its dual values are used in the

first iteration of sprint method. After finding good linear programming solution, Carmen

algorithm and branch on follow-ons methods are used individually to find integer solution.

Sprint method is used to find linear programming solution, because even for large

size of pairings, optimum solution is found after a few iterations. The main logic behind

the sprint method is to solve large sized problems with solving small subsets iteratively but

28

taking reduced cost into consideration in order to include most probable optimum pairings

to small subsets. As it is the fastest method for finding optimum solution for LP problems,

it is used as primary method in this study. One of the disadvantages of this method is that

all pairings must be generated and this means more memory is needed before starting

iteration. Also this disadvantage is the main difference between the dynamic pairing

generation methods (A Heuristic Approach for the Airline Crew Pairing Problem) and

sprint method. As described in section 3.2.2, pairings are generated based on their reduced

costs. But main side effect of this method is that even though pairings are generated

dynamically, generating pairings are not straight forward as in sprint method. Because

based on their flight and duty networks for generating new pairings different algorithms

should be used and these algorithms are mostly time consuming. That is why sprint method

is used to solve LP problem as it is faster than the other. Table 4.1 shows the main

differences between two methods

Table 4.1 The differences between Sprint and Dynamic Pairing Generation method

Also experiments show the difference between sprint method and dynamic column

generation method. Table 4.2 shows the run time of the methods for various numbers of

flights.

Sprint Method Dynamic Pairing Generation

 Generate all pairings Dynamic pairing generation

Needs more memory Needs less memory

Pairings are generated

by simply constructing

a tree and using depth-

first algorithm.

Pairings are generated by constructing

complex network and using shortest

path algorithm.

Uses reduced cost

values to generate small

subsets

Uses reduced cost values to generate

pairings

29

Table 4.2 The run time of the methods for various numbers of flights [3] [5]

Sprint Method Dynamic Pairing Generation

 Number of

Flights

CPU Time Number of

Flights

CPU Time

837 0.95 hours 123 0.13 hours

1152 6.3 hours 449 3.57 hours

For finding integer solution after solving LP problem, both branch on follow-on

method and Carmen algorithm is implemented. Carmen algorithm is faster than branch on

follow-on method on the other hand branch on follow on method gives better and more

feasible solution than the Carmen method. The main disadvantages of Carmen method is

that it tries to find integer variable randomly. As described in section 3.3.3 the main logic

behind Carmen algorithm is deciding on a variable to be 0 or 1 based on its reduced cost. If

the reduced cost of the variable is negative then it is set to 1 if positive it is set to 0.

However if the reduced cost is zero it is not easy to decide that variable should be 0 or 1.

To resolve this problem a simple algorithm is implemented but still there will be variables

with zero reduced cost. Hence it is decided to be 0 or 1 randomly for that variable and this

randomness might cause getting bad results from the Carmen algorithm. That is why after

Carmen algorithm implementation also branch on follow-on method is implemented. In

branch on follow-ons method as described in section 3.3.2 a special branch rule is used to

find integer solutions. Before starting branch on follow-on method, an initial phase should

be constructed. The initial phase is created by selecting 10000 or 15000 pairings based on

their reduced cost. In every branch one ore more follow-ons are fixed and generated

pairing list is solved until no follow-on is left to be fixed. In figure 4.1 the overall

algorithm is shown

30

Figure 4.1 The overall algorithm of the hybrid method

START

SOLVE LP
USING

SPRINT
METHOD

GENERATE
PAIRINGS

FIND
INITIAL

SOLUTION

SOLUTION
INTEGRAL

STOP

BRANCH ON
FOLLOW-

ONS
METHOD

CARMEN
METHOD

Y

N

INTEGRAL
SOLUTION

31

4.1. Usage Areas of Hybrid Method

In the previous section, the usage of hybrid method on crew pairing problem is

shown. In crew pairing problem typically, flight schedule is given as an input and found

pairings are obtained as an output. For different problems like train scheduling and bus

scheduling, similar input and output components are used. For example in train schedule

problem, train schedule can be considered as flight schedule, train driver can be considered

as airline crew and obtained train driver pairings can also be considered as crew pairings.

Therefore, the methodology in crew pairing problem (the hybrid method) not only

applicable for airline crew scheduling problem, it can also be applied to different crew or

driver scheduling problems. More interesting usage area of hybrid method can be doctor

and nurse scheduling in hospitals. For example, emergency services should be in operation

for 24 hours and at any moment the hospital should be occupied at least one doctor or

nurse. In doctor scheduling problem, whole day can be divided into 24 hours and each

doctor can be scheduled for two or more hours. But there should not be gaps in the

schedule between shift (can be considered as flights) changes unlike in crew pairing

problem that there are sitting times between flights or duties. Hence, the hybrid method can

be applied to almost every scheduling problem by simply changing parameters or rules.

32

5. EXPERIMENTS

Two versions of hybrid method is implemented one is using Carmen Algorithm and

the other one is using branch on Follow-ons method to find integer solution. The hybrid

algorithm is implemented by using Java and as a LP solver Matlab is used. Using special

Matlab builder, required functions are converted into Java code and therefore matlab

functions are called directly from Java code. All test runs are made on PC Pentium IV with

1GB ram. For sprint method, size of the sub problem is 5000 and Carmen algorithm and

branch on follow-ons method is started with 10000 pairings. In experiments, the following

values are used;

Table 5.1 The used values in experiments

Duty Rules

 minsit 0.5 hours

maxsit 4 hours

maxelapse 12 hours

maxfly 8 hours

mg1 3 hours

f1 4/7 hours

 Pairing Rules

 maxduties 2 duties

mg2 4.75 hours

f2 2/7 hours

In Table 5.2, the comparison between Carmen algorithm and branch on follow-on

method is shown and before finding integer values sprint method is used. The column

“flights” represents the number of flights; the “objective” gives objective value of the

solution; the “CPU Time” column represents the run time of the trial in minutes. As the

experiments show that Carmen algorithm is faster than the other but it gives bad results

considering the objective value.

33

Table 5.2 The comparison between Carmen algorithm and branch on follow-on method

Branch on Follow-on Carmen Algorithm

 Flights objective

(h)

CPU Time

(min)

Flights objective

(h)

CPU Time

(min)

38 60.15 55 38 95.27 42

58 95 71 58 171 61

96 152.07 102 96 342.12 77

144 251.82 167 144 453.48 125

222 380.43 245 222 610.60 186

Experiments are also proved that Carmen algorithm is the fastest but it does not give

good results when considering branch on follow-on method.

Table 5.3 shows the difference between hybrid method and original Carmen

algorithm. The column “Flights” represents the number of flights; the “obj.” gives

objective value of the solution; the “CPU” column represents the run time of the trial in

minutes. Experiments show that hybrid method with Carmen algorithm gives similar

results with the original one. It is observed that using sprint method as a preliminary step

does not have significant effect on final result. Also the run time of the trials in hybrid

method is longer than the original Carmen algorithm. The reason for longer runs is that in

hybrid method before starting Carmen algorithm, LP problem is solved with sprint method.

Big portion of the time is used for solving LP problem. But in original Carmen algorithm,

integer solution is found in a more direct way that is; it does not use the solution of LP

problem as an intermediate step. When comparing hybrid method with branch on follow-

on method with the original Carmen algorithm, hybrid method gives better results. The

similar results are also obtained in table 5.2 when comparing two versions of hybrid

method.

34

Table 5.3 The comparison between hybrid method and original Carmen algorithm

Hybrid Method with Branch

on Follow-on Method

Hybrid Method with

Carmen Algorithm

Original Carmen

Algorithm

 Flights obj. (h) CPU Flights obj. (h) CPU Flights obj. (h) CPU

144 251.82 167 144 453.48 125 144 470.37 15

222 380.43 245 222 610.60 186 222 617.95 27

35

6. CONCLUSION

In this study a hybrid method is modeled for airline crew pairing problem by

combining previously developed methods. The aim of developing a hybrid method is to

find better solutions than previous methods. The main advantage of our hybrid method is

that it finds the solution very fast. But it also most of the time gives bad result because of

using Carmen algorithm whose side effect is choosing variables randomly while finding

integer values. That is why another version of hybrid method is implemented by using

branch on follow-on method. With branch on follow-on method, it is not as fast as Carmen

algorithm but it gives better result which is also shown with experiments. Also experiments

show that using sprint method before Carmen algorithm does not have significant effect on

the final solution.

In sprint method using a good initial solution plays an important role on finding good

solution for LP problem. In this study for finding initial solution, pairings are selected

randomly. To improve the quality of the sprint method other algorithm can be used for

finding an initial solution. For example any solution which is obtained from an earlier

similar run can be used as initial solution.

36

APPENDIX A: DATA USED IN EXPERIMENTS

Table A.1 The sample timetable for 38 flights [6]

Table A.2 The sample timetable for 58 flights [6]

37

Table A.3 The sample timetable for 96 flights [6]

38

REFERENCES

1. Gustafsson, T., “A heuristic approach to column generation for airline crew

scheduling”, Chalmers University of Technology, Gothenburg, Sweden, 1999.

2. Anbil, R., R. Tanga, and E.L. Johnson, “A global approach to crew-pairing

optimization”, IBM Systems Journal 31, 71-78., 1992.

3. Vance, P. H., A. Atamturk, C. Barnhart, E. Gelman, E. L. Johnson, A. Krishna, D.

Madidhara, G. L., Nemhauser, and R. Rebello, “A Heuristic Branch-and-Price

Approach for the Airline Crew Pairing Problem”, Technical Report TLI/LEC-97-

06, Georgia Institute of Technology, Atlanta, GA, 1997.

4. Ryan, D. M., and B. A. Foster, “An integer programming approach to scheduling”,

A. Wren (ed.) Computer Scheduling of Public Transport Urban Passenger Vehicle

and Crew Scheduling, North-Holland, Amsterdam, 269-280, 1981.

5. Chu, H. D., E. Gelman, and E. L. Johnson, “Solving large scale crew scheduling

problems”, European Journal of Operational Research 97 260-268, 1997.

6. Tekiner H, et al, “Robust crew pairing for managing extra flights”, Computers and

Operations Research 2008.

7. Wedelin, D., “An algorithm for large scale 0–1 integer programming with

application to airline crew scheduling”, Annals of Operations Research, 1995.

8. Barnhart, C., E. L. Johnson, G. L. Nemhauser, Martin W. P. Savelsbergh, P. H.

Vance, “Branch-and-Price Column Generation for Solving Huge Integer

Programs”, Operations Research, 46, 316–329, 1998.

9. Ranga, A., J. J. Forrest, and W. R. Pulleyblank, “Column Generation and the

Airline Crew Pairing Problem”, Documenta Mathematica III, 677–686, 1998.

39

10. Thorsteinsson, E. S., G. Ottosson, “Linear Relaxations and Reduced-Cost based

Propagation of Continuous Varible Subscripts”, Annals of Operations Research

115, 15–29, 2002.

11. Zeghal, F. M., and M. Minoux, “Modeling and solving a Crew Assignment

Problem in air transportation”, European Journal of Operational Research 175

187–20, 2006.

12. Yu, G., “OR In Airline Industury”, Kluwer Academic Publishers, 1999.

13. Vance, P. H., C. Barnhart, E.L. Johnson, and G.L. Nemhauser, “Airline Crew

Schduling: A new Formulation and Decomposition Algorithm”, Georgia Institute

of Technology, Atlanta, Gergia, 1994.

14. Klabjan, D., E. L. Johnson, and G. L. Nemhauser, “Solving Large Airline Crew

Scheduling Problems: Random Pairing Generation and Strong Branching”,

Computational Optimization and Applications, 20, 73–91, 2001.

15. Takkula, T. K., “The Dual of Integer Linear Programs”, Chalmers University of

Technology and Gothenburg University, 2001.

16. Schaefer, A. J., E. L. Johnson, A. J. Kleywegt, and G. L. Nemhauser, “Airline

Crew Scheduling under Uncertainty”, Georgia Institute of Technology, 2001.

17. Vershelde, J., “Linear Programming in MATLAB”, Introduction to Symbolic

Computation, Lecture 9, page 1-2, 2003.

18. Klimke, A., “How to Access Matlab from Java”, Universitat Stuttgart, 2003.

19. Borndörger, R., U. Schelten, T. Schlechte, and S. Weider, “A Column Generation

Approach to Airline Crew Scheduling”, Konrad-Zuse-Zentrum für

Informationstechnik Berlin, 2006.

40

20. Crawford, B., C. Castro, E. Monfroy, “A Constructive Hybrid Algorithm for Crew

Pairing Optimization” Pontificia Universidad, Lecture Notes in Computer Science,

2006.

21. Klabjan, D., E. L. Johnson, and G. L. Nemhauser, “Airline Crew Scheduling with

Regularity”, Transportation Science, 2001.

22. Medard, C. P., and N. Sawhney, “Airline crew scheduling from planning to

operations”, European Journal of Operational Research 183, 1013–1027, 2007.

23. Ahmadbeygi, S., A. Cohn, M. Weir, “An integer programming approach to

generating airline crew pairings”, Computers and Operations Research, 2008.

