Combinatorial optimization 1 Winter term 2016/2017

7 th working sheet

43. Let $A \in \mathbb{R}^{\mathrm{m} \times \mathrm{n}}, m, n \in \mathbb{N}$, be a unimodular matrix. Are the following matrices also unimodular: $-A, A^{T},(A \mid A), A^{-1}, A \mid I_{m} ? I_{m}$ denotes the $m \times m$ identity matrix, A^{T} is the transposed of A, and the operator \mid denotes the column-wise concatenation of matrices.
44. Consider the following statement about total unimodular matrices (the theorem of Ghouila-Houri, 1962): A matrix $A=\left(a_{i j}\right) \in\{0,1,-1\}^{m \times n}$ is total unimodular, if and only if for any subset $R \subseteq\{1,2, \ldots, m\}$ of the row indices there is a partition $R=R_{1} \biguplus R_{2}$ such that

$$
\sum_{i \in R_{1}} a_{i j}-\sum_{i \in R_{2}} a_{i j} \in\{-1,0,1\},
$$

for all $j=1,2, \ldots, n^{1}$.
(a) Show that the above theorem of Ghouila-Houri implies the following statement, known as the theorem of Heller and Tompkins, 1956.
Let A be an m by matrix with a partition of its row indices into two disjoint sets B and C. Then the following four conditions together are sufficient for A to be totally unimodular:
(i) Every column of A contains at most two non-zero entries;
(ii) Every entry in A equals $0,+1$, or 1 ;
(iii) If two non-zero entries in a column of A have the same sign, then the row of one of these entries is in B and the row of the other entry is in C;
(iv) If two non-zero entries in a column of A have opposite signs, then the rows of the two entries are either both in B or both in C.

Moreoever show that a total unimodular matrix $A=\left(a_{i j}\right) \in\{0,-1,+1\}^{m \times n}$ with at most two non-zero entries per column fulfills conditions (iii) and (iv) above, thus these conditions are necessary for the total unimodularity of such a matrix A.
(b) Is the following matrix total unimodular?

$$
A=\left(\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

(c) Show by means of a counterexample that the total unimodularity of matrices A und B is not sufficient for the total unimodularity of the matrix $(A \mid B)$.
45. An $m \times n 0-1$ matrix is called interval matrix if the 1 -entries of any column $j, j \in\{1,2, \ldots, n\}$, build an interval, i.e. $a_{i j}=a_{k j}=1$ with $k>i+1$ implies $a_{\ell j}=1$ for all $\ell=i+1, \ldots, k-1$. Show that the interval matrices are total unimodular.

[^0]
[^0]: ${ }^{1}$ You don't need to prove this theorem, but you can of course try to do so. The proof can be found e.g. in B. Korte und J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer, Fifth Edition, 2012 , pp. 114-115.

