Combinatorial optimization 1 Winter term 2016/2017
 6th working sheet

37. Consider a bipartite graph $G=(U \dot{\cup} V, E)$ with $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}, V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and edge set specified by the matrix A below:

$$
A=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

The row indices of A corresponds to the indices of vertices in U, the column indices of A correspond to the vertex indices in V, and an entry $a_{i j}$ equals 1 if and only if there is an edge $\left(u_{i}, v_{j}\right)$ in $E(G)$. Determine algorithmically a matching with maximum cardinality in G. Use that matching to determine a minimum vertex cover in G.
38. Let $r \in \mathbb{N}$ and let $G=(A \dot{\cup} B, E)$ be an r-regular bipartite graph, i.e. a bipartite graph for which $\operatorname{deg}(v)=r, \forall v \in V(G)$. Show that the edge set $E(G)$ can be partitioned into r disjoint perfect matchings.
39. Prove the Tutte-Berge formula for the maximum cardinality of a matching in a graph G

$$
\nu(G)=\frac{1}{2} \min \{|V(G)|-q(G \backslash A)+|A|: A \subseteq V(G)\}
$$

$\nu(G)$ is the matching number of G and $q(G \backslash A)$ is the number of odd connected components in the graph $G \backslash A$ obtained from G by removing all vertices in A and all edges adjacent to any of the removed vertices.
Hint: You could use the blossom algorithm of Edmonds to obtain an algorithmic proof.
40. Use Edmonds blossom algorithm to determine a matching with maximum cardinality in the graph given in Figure 1. Initialise the algorithm with the empty matching. Specify a subset A of the vertex set $V(G)$ for which the minimum in the Tutte-Berge formula is reached and justify your choice.
41. Show that every (simple) graph G with n vertices and minimum degree $\delta(G)=k$, i.e. $k:=$ $\min \{\operatorname{deg}(v): v \in V(G)\}$, has a matching with cardinality $\min \left\{\left\lfloor\frac{n}{2}\right\rfloor, k\right\}$. (A simple graph is a graph without multiple edges and without loops.)
Hint: Use the Tutte-Berge formula.
42. Show that a 3 -regular graph with at most two bridges has a perfect matching. A bridge in a graph G is an edge $e \in E(G)$ with the property that the graph $G-e$ obtained from G by removing edge e has more connected components than G. Is there any 3 -regular graph which does not have a perfect matching?
Hint: Use the Tutte-Berge formula.

Figure 1: Graph for exercise no. 40.

