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34. Let G be a digraph with edge capacities u:E(G)→ IR+ and balance values b:V (G)→ IR such that∑
v∈V (G) b(v) = 0. Show that there exists a b-flow in (G, u, b) iff the following inequality holds for all

X ⊆ V (G): ∑
e∈δ+(X)

u(e) ≥
∑
v∈X

b(v) .

Hint: In order to show the sufficient condition the characterization of the existence of a b-flow by
means of the maximum flow problem can be used. Then apply the max-flow-min-cut-theorem.

35. (a) Solve the minimum cost flow problem for the network represented in Figure 1 by means of
the minimum-cycle-cancelling-algorithm. The pairs of numbers next to the edges represent the
capacities and the costs, respectively, the left-most number being the capacity and the right-
most number being the cost. The numbers next to the vertices represent the balance values,
respectively. Start the algorithm with the following flow: f(1, 3) = 1, f(3, 4) = 3, f(3, 5) =
2, f(2, 3) = 4, f(5, 2) = 8.

(b) After computing the optimal flow f specify a potential function π(v), v ∈ V (G), on the vertices,
such that the reduced costs cπ(e) fulfill the inequalities cπ(e) ≥ 0 for all e ∈ E(Gf ).

36. Solve the minimum cost flow problem for the network represented in Figure 1 by means of the
successive-shortests-path-algorithm.
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Figure 1: Input for the task 35 und 36


