Combinatorial optimization 1 Winter term 2016/20172nd working sheet¹

- 12* Let G = (V, E) be a graph and let $F = (F_1, F_2, \ldots, F_k)$ be a k-tuple of pairwise edge-disjoint forests in G, i.e. $\forall i \in \{1, 2, \ldots, k\}$, F_i is a forest in G and $E(F_i) \cap E(F_j) = \emptyset$, for all $i \neq j$, $i, j \in \{1, 2, \ldots, k\}$. Assume moreover that $F = (F_1, F_2, \ldots, F_k)$ is chosen so as to maximize |E(F)|, where $E(F) = \bigcup_{i=1}^k E(F_i)$, among all k-tuples of pairwise edge-disjoint forests in G. Let $e \in E(G) \setminus E(F)$. Show that there exists $X \subseteq V(G)$ with $e \subseteq X$ such that $F_i[X]$ is connected, for all $i \in \{1, 2, \ldots, k\}$, and illustrate this statement by a concrete example.
- 13.* Let G = (V, E) be a graph. A multicut in G is a set of edges $\delta(X_1, X_2, \ldots, X_p) := \delta(X_1) \cup \delta(X_2) \cup \ldots \cup \delta(X_p)$, where p is a natural number, $p \ge 2$, and (X_1, X_2, \ldots, X_p) is a partition of the vertex set V(G), i.e. $V(G) = \bigcup_{i=1}^p X_i$, $X_i \cap X_j = \emptyset$ for all $i \ne j$, $i, j \in \{1, 2, \ldots, p\}$, and $X_i \ne \emptyset$, for all $i \in \{1, 2, \ldots, p\}$. Show that G contains k pairwise edge-disjoint spanning trees if and only if $|\delta(X_1, X_2, \ldots, X_p)| \ge k(p-1)$ for every multicut $\delta(X_1, X_2, \ldots, X_p)$ in G with $p \in \{2, 3, \ldots, |V(G)|\}$, and illustrate this statement by a concrete example.
- 14. The shortest path arborescence

Let G be a digraph with edge weights $c: E(G) \to \mathbb{R}$ and $s \in V(G)$. A vertex v is called reachable from s in G iff there exists some s-v path P_v in G. An arborescence A with root s is called a shortest path arborescence with root s in G iff (i) V(A) consists of all vertices v reachable from s in G, and (ii) for all $v \in V(A) \setminus \{s\}$ the unique s-v path in A is a shortest s-v-path in G.

- (a) Show that if the edge weight function c is conservative, then there exists a shortest path arborescence with root s for every $s \in V(G)$. Is the shortest path arborescence with root s uniquely determined?
- (b) Assume that every $v \in V(G)$ is reachable from s and that the edge weights are non-negative. Let A_P be a shortest path arborescence with root s in G and let A_S be a minimum spanning arborescence with root s in G. Show that $c(A_P) \leq (|V(G)| - 1)c(A_S)$ holds.
- 15. Solve the single source shortest paths problem with source at vertex s for the digraph in Figure 1. The numbers on the edges are the edge weights.
- 16. Consider the digraph in Figure 1. Solve the single source shortest paths problem with source at vertex 6 in the (non-directed) graph obtained from $G[\{3, 6, 7, 8\}]$ by ignoring the directions of the edges.
- 17. Modify Dijkstra's algorithm so as to obtain an efficient algorithm for the bottleneck shortest path problem defined as follows. In a given digraph G with non-negative edge weights $c: E(G) \to \mathbb{R}_+$ and two vertices $s, t \in V(G), s \neq t$, determine a (directed) s-t-path P^* such that

$$\max_{e \in E(P^*)} c(e) = \min\{\max_{e \in E(P)} c(e): P \text{ is an } s\text{-}t\text{-path in } G\}.$$

Such a path P^* is called *bottleneck shortest s-t-path* in G. Does your algorithm also work correctly if the weights c(e) are allowed to take negative values? Argue upon your answer!

- 18. Use the Moore-Bellman-Ford algorithm to solve the single source shortest paths problem with source at vertex s in the digraph in Figure 2. What happens if the weight of edge (2,3) is changed to 4? Apply the algorithm in this case and comment on its output.
- 19. Consider a digraph G with conservative edge weights $C: E(G) \to \mathbb{R}$ and two vertices $s, t \in V(G)$, $s \neq t$. Assume that there is only one shortest s-t-path P in G. Can you determine the second shortest s-t-path in G, i.e. the shortest among all s-t-paths in G except for P, in polynomial time?

¹Exercises marked with an * are more demanding than others.

20. (Shortest) paths in acyclic graphs

Let G = (V, E) be a digraph with n := |V(G)|. G is called *acyclic* or *cycle-free* if there are no (directed) cycles in G. A topological sorting of the vertices in G is a bijective mapping $f: V(G) \to \{1, 2, ..., n\}$ such that f(i) < f(j) for all $(i, j) \in E(G)$.

- (a) Let G be an acyclic digraph. Formulate a depth first search (DFS) based algorithm to determine a topological sorting f in G in linear time. Show that the mapping f determined by DFS is not a topological sorting if G is not cycle-free. Hence your linear-time algorithm can also be used to detect the existence of cycles in G.
- (b) Modify the Morre-Bellman-Ford algorithm for the single source shortest paths problem so that it runs in linear time in acyclic graphs.
- (c) Consider the so-called longest path problem in G defined as follows. For a given digraph G and two vertices $s, t \in V(G), s \neq t$, determine a longest s-t-path in G. Can you specify a polynomial-time algorithm for this problem? What happens if G is acyclic?

Figure 1: Digraph for Example 15, 16

Figure 2: Digraph for Example 18