Diskrete Mathematik

28. Juni 2008

Aufgabe:	1	2	3	4	5		
Punkte:	3	4	3	5	5		
						=	Punkte

Bitte beachten:

- Alle Rechenschritte sind anzugeben und alle Antworten sind ausführlich zu begründen!
- Schreiben sie jedes Beispiel auf ein eigenes Blatt!
- Bitte kreuzen Sie den gewünschten Termin für die mündliche Prüfung an:

Mi., 2.7.	Do., 3.7.	Fr., 4.7.	KW 28: Mi.,9.7. bis Fr., 11.7.

- 1. Es sei (G, \circ) eine Gruppe und H eine endliche, nicht leere Teilmenge von G, die unter der Operation \circ abgeschlossen ist. Zeigen Sie, dass (H, \circ) eine Untergruppe von (G, \circ) ist.
- 2. Ein einfacher, ungerichteter Graph G=(V,E) ist zusammenhängend, enthält mindestens einen Knoten mit Grad 6, enthält mindestens zwei verschiedene Kreise, d.h. zwei Kreise mit disjunkten Knotenmengen, und erfüllt |E|=10. Wie groß kann |V| unter diesen Bedingungen sein?
- 3. Gegeben sind 12 Chemikalien. Es ist gefährlich, Chemikalie i ($1 \le i \le 10$) im gleichen Raum mit Chemikalie i+1 oder im gleichen Raum mit Chemikalie i+2 zu lagern. Bestimmen Sie die kleinste Anzahl von benötigten Lagerräumen.
 - Hinweis: Modellieren Sie das Problem als Färbungsproblem in einem Graphen.
- 4. Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl. Bestimmen Sie die Anzahl b_n der Folgen (a_i) , $1 \le i \le n$, der Länge n, die folgende Bedingungen erfüllen: $a_i \in \{0,1,3\}, \forall i \in \{1,2,\ldots,n\}, \text{ und } a_i + a_{i+1} \le 3, \forall i \in \{1,2,\ldots,n-1\}.$ Untersuchen Sie das asymptotische Verhalten von $(b_n)_{n \in \mathbb{N}}$.
- 5. Sei a_n die Anzahl von geordneten Trippeln (i,j,k) ganzer Zahlen, sodass $i \geq 1, j \geq 2, k \geq 0$ und $2i+j+2k=n, n \in \mathbb{N}_0$. Finden Sie die erzeugende Funktion der Folge $(a_n)_{n \in \mathbb{N}_0}$ und bestimmen Sie eine Formel für a_n .