Diskrete Mathematik

26. September 2008

Aufgabe:	1	2	3	4	5		
Punkte:	5	3	3	4	5		
						=	Punkte

Bitte beachten:

- Alle Rechenschritte sind anzugeben und alle Antworten sind ausführlich zu begründen!
- Schreiben Sie jedes Beispiel auf ein eigenes Blatt!
- Bitte kreuzen Sie den gewünschten Termin für die mündliche Prüfung an:

KW 40	KW 41	KW 42	KW 43

1. Betrachten Sie die Menge $G = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ wobei die Funktionen $f_i \colon \mathbb{R} \setminus \{0,1\} \to \mathbb{R}$ folgendermaßen gegeben sind: $f_1(x) = x, f_2(x) = 1/x, f_3(x) = 1-x, f_4(x) = x/(x-1), f_5(x) = (x-1)/x, f_6(x) = 1/(1-x).$

Zeigen Sie, dass das Paar (G, \circ) eine Gruppe bildet, wobei \circ die gewöhnliche Verknüpfung von Funktionen ist. Stellen Sie die Verknüpfungstafel auf. Zeigen Sie, dass diese Gruppe isomorph zur symmetrischen Gruppe S_3 ist.

- 2. Finden Sie Beispiele für Graphen, die
 - (a) Euler'sch und Hamilton'sch sind,
 - (b) nicht Euler'sch, aber Hamilton'sch sind,
 - (c) Euler'sch, aber nicht Hamilton'sch sind,
 - (d) weder Euler'sch noch Hamilton'sch sind.
- 3. G = (V, E) sei ein planarer Graph mit |V| = 9 Knoten, die alle Grad $k \in \mathbb{N}$ besitzen. Die Anzahl der Flächen in der Ebene, die aus einer planaren Einbettung von G resultieren, sei 11. Bestimmen Sie k. Können Sie auch G bestimmen?
- 4. Lösen Sie folgende Rekursionsgleichung:

$$a_{n+2} - 2a_{n+1} + a_n = 2^n$$
 für $n > 0$

mit Anfangsbedingungen $a_0 = 1$ und $a_1 = 3$.

- 5. Ein Team besteht aus $k_1 \geq 1$ Spielern der Altersgruppe 1, $k_2 \geq 1$ Spielern der Altersgruppe 2 und $k_3 \geq 1$ Trainern. Insgesamt umfasst das Team n Personen.
 - (a) Wieviele Zusammensetzungen (k_1, k_2, k_3) des Teams sind möglich?
 - (b) Sei die Anzahl n der Teammitglieder eine gerade Zahl. Wieviele Zusammensetzungen (k_1, k_2, k_3) des Teams sind möglich, wenn es für jeden Spieler genau einen Trainer gibt?