Advanced and algorithmic graph theory Summer term 2016 5th work sheet (colouring)

31. This example shows that the clique number $\omega(G)$ can be an arbitrarily bad lower bound on the chromatic number $\chi(G)$ of a graph G.

Consider the sequence of graphs M_k , $k \in \mathbb{N}$, $k \geq 3$, constructed recursively as follows (cf. Mycielski 1955 [2]). Start with $M_3 := C_5$, the cycle on 5 vertices. The graph M_{k+1} is obtained from M_k by adding to M_k (n+1) new vertices u_1, u_2, \ldots, u_n, w , where $n := |V(M_k)|$, such that w is connected to each u_i , $1 \leq i \leq n$, and u_i is connected to all vertices in $\Gamma(v_i)$, i.e. to all neighbours of v_i , $1 \leq i \leq n$. Show the following properties of M_k , $k \geq 3$:

- (i) M_k is triangle-free, i.e. it contains no cycle of length 3, $\forall k \geq 3$,
- (ii) $\chi(M_k) = k$,
- (iii) $|V(M_k)| = 3 \cdot 2^{k-2} 1.$

The graph M_4 is also called the Grötzsch-Graph ¹.

32. This example shows that the quotient $\frac{|V(G)|}{\alpha(G)}$ can be an arbitrarily bad lower bound on the chromatic number $\chi(G)$ of a graph G with stability number $\alpha(G)$.

Let G_k be a graph with 2k + 1 vertices such that $V(G_k) = V(K_k) \bigcup V(S_k) \bigcup \{w\}$, where K_k is an induced subgraph of G_k which is complete and has k vertices, S_k is an induced subgraph of G_k which has no edges and k vertices, and w is a vertex in G_k connected to all vertices of S_k and to no vertex of K_k . Moreover each vertex of S_k is connected to all vertices of K_k . Show that $\chi(G_k) = k + 1$ and $\alpha(G_k) = k$ and deduce thereout the arbitrarily bad quality of the bound $\frac{|V(G)|}{\alpha(G)}$ for $\chi(G)$.

- 33. Calculate the chromatic number of a graph in terms of the chromatic number of its blocks.
- 34. (a) Show that every graph G has a vertex ordering for which the greedy algorithm only uses $\chi(G)$ colours.
 - (b) For every $n \in \mathbb{N}$, $n \ge 2$, find a bipartite graph on 2n vertices ordered in such a way that the greedy algorithm uses n rather than 2 colours.
- 35. Find a graph G for which Brooks theorem yields a significantly weaker bound on $\chi(G)$ than the colouring number $col(G) := \max{\delta(H): H \subseteq G} + 1$ (cf. lecture).
- 36. (a) Show that the complete graph K_n on n vertices is a class 1 graph iff n is an even number.
 - (b) A 1-factor in a graph G is a perfect matching in G. A graph G is called 1-factorisable if its edge set can be partitioned into 1-factors. Show that regular graphs are class 1 graphs if and only if they are 1-factorisable.
- 37. A vertex list colouring of a graph is defined analogoulary to the edge list colouring (cf. lecture). Given a graph G and lists of colours L(v) for all $v \in V(G)$, a vertex list colouring is a mapping

$$c: V(G) \to \bigcup_{v \in V(G)} L(v), v \mapsto c(v),$$

such that $c(v) \in L(v)$, $\forall v \in V(G)$, and $c(u) \neq c(v)$ whenever $u, v \in V(G)$ and $\{u, v\} \in E(G)$ holds. G is called vertex k-choosable iff for any collection of lists L(v), $v \in V(G)$, with $|L(v)| \geq k$, $\forall v \in V(G)$, there exists a vertex list colouring. The smallest natural number k for which a graph G is vertex k-choosable is called the *list chromatic number of* G (or the choice number of G) and is denoted by $\chi_l(G)$. Show that every plane graph is vertex 6-choosable².

 $^{^{1}}M_{4}$ is the unique smallest triangle-free 4-chromatic graph, where "smallest" refers to the number of vertices [1].

²There is a stronger result of Thomassen [3] stating that every planar graph is vertex 5-choosable.

- 38. For every natural number $k \in \mathbb{N}$ find a graph G with $\chi(G) = 2$ and $\chi_l(G) \ge k$.
- 39. Applications of coloring problems
 - (a) Consider the following school timetabling problem. The dean is in charge of the timetable and has already assigned the courses to the teachers. Next he wants to assign a time slot from a given set of time slots to every course (e.g. 10 teaching units per day, 5 days per week). Model this problem as a graph coloring problem by assuming that a teacher can teach at most one course at a time and a class can take at most one course at a time. Assume moreover that teachers might not be available at all slots. How would you modify your model to determine a valid assignment of courses to the time slots in this case?
 - (b) Model the sudoku game as a graph coloring problem. Consider that a typical sudoku has also some already filled cells.

References

- V. Chvátal, The minimality of the Mycielski graph, in Graphs and Combinatorics, Lecture Notes in Mathematics 406, 243–246, Springer, Berlin, 1973.
- [2] J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3, 1955, 161–162.
- [3] C. Thomassen, Every planar graph is 5-choosable, Journal of Combinatorial Theory (B) 62(1), 1994, 180–181.