Advanced and algorithmic graph theory
 Summer term 2016

4th work sheet

27. Show that a planar graph G is 2-connected iff the border of every face of any geometric dual G^{*} of G is a cycle.
28. Let G be a planar connected graph. Show that $\left(G^{*}\right)^{*}$ is isomporphic to G, where G^{*} is a geometric dual of G and $\left(G^{*}\right)^{*}$ is a geometric dual of G^{*}. Illustrate the statement by examples where $\kappa(G)=1$, $\kappa(G)=2$ and $\kappa(G)=3$ hold, respectively.
29. Let G and H be connected graphs.
(a) Show that G contains H as a minor, i.e. $G \succ H$, iff there exists a mapping $\phi: V(G) \rightarrow V(H)$ such that the preimages $\phi^{-1}(\{v\})$, for $v \in V(H)$, fulfill the following properties:
(i) $G\left[\phi^{-1}(\{v\})\right]$ is connected, $\forall v \in V(H)$, and
(ii) $\forall\{u, v\} \in E(H)$ the cut $\delta\left(\phi^{-1}(\{u\}), \phi^{-1}(\{v\})\right)$ in G is nonempty.
(b) If $\Delta(H) \leq 3$, then $G \succ H$ holds iff G contains H as a subdivision.
30. (a) Specify an infinite set of self-dual graphs.
(b) Show that if a geometric dual G^{*} of a graph G is 2 -connected, than G itself is not necessarily 2-connected. (Recall that G^{*} is in general a multigraph, i.e. it may contain loops and mutiple edges. The definition of 2-connectivity for multigraphs is analogous to the definition of 2connectivity for graphs: a multigraph G is 2 -connected if and only if the graph obtained from G by removing some arbitrarily chosen vertex $v \in V(G)$ together with the edges incident to v is still connected.)
