Advanced and algorithmic graph theory
 Summer term 2016

3d work sheet

20. Consider the following theorem of Chvátal and Erdös (cf. lecture)

Let G be a graph with at least 3 vertices $(|V(G)| \geq 3)$, connectivity number $\kappa(G)$ and stability number $\alpha(G)$. If $\kappa(G) \geq \alpha(G)$, then G is Hamiltonian.

Show that this theorem is best possible, in the sense that there exist non-hamiltonian graphs G with $\alpha(G)=\kappa(G)+1$. Illustrate this fact for the Petersen graph and the complete bipartite graph $K_{r, r+1}$, $r \in \mathbb{N}$.
21. Consider the following theorem of Ore, Bermond and Linial (cf. lecture)

Let G be a 2 -connected graph in which $d(x)+d(y) \geq d$ holds for any two non-adjacent vertices $x, y \in V(G)$ and some arbitrary but fixed natural number d. Then there exists a cycle of length at least $\min \{n, d\}$ in G.

Show that this theorem directly implies the following two results
(1) If in a graph G with $|V(G)| \geq 3$, the inequality $d(x)+d(y) \geq n$ holds for any two vertices $x, y \in V(G)$ such that $\{x, y\} \notin E(G)$, then G is hamiltonian. (Due to Ore, cf. lecture.)
(2) A graph G with $n:=|V(G)| \geq 3$ and minimum degree $\delta(G) \geq n / 2$ is hamiltonian. (Due to Dirac, cf. lecture.)
22. Let G be a connected graph with $d:=\min \{d(x)+d(y): x, y \in V(G),\{x, y\} \notin E(G)\}$. If $d \geq 2 \delta(G)$ holds, then G contains a path with at least $\min \{d+1, n\}$ vertices.
23. Construct
(a) a non-hamiltonian connected 4-regular graph with 11 vertices, and
(b) a non-hamiltonian 2 -connected 4 -regular graph.
24. Show that the d-dimensional cube Q_{d} is hamiltonian (cf. Exercise No. 2 for the definition of Q_{d}).
25. A graph G is called hamiltonian connected iff for any two different vertices $u, v \in V(G), u \neq v$, there exists a hamiltonian $u-v$-path in G. Prove the following statements:
(a) If $d:=\min \{d(x)+d(y): x, y \in V(G),\{x, y\} \notin E(G)\} \geq|V(G)|+1$ holds, than also $\kappa(G) \geq$ $\alpha(G)+1$ holds.
(b) If $\kappa(G) \geq \alpha(G)+1$ holds for some graph G, then G is hamiltonian connected.
(c) If the $(n+1)$-st hamiltonian hull $\mathcal{H}_{n}(G)$ of G is isomorphic to K_{n}, then G is hamiltonian connected.
26. Show that a planar graph is 2 -connected, iff the border of every region is a cycle.

