Advanced and algorithmic graph theory Summer term 2016

3d work sheet

20. Consider the following theorem of Chvátal and Erdös (cf. lecture)

Let G be a graph with at least 3 vertices $(|V(G)| \ge 3)$, connectivity number $\kappa(G)$ and stability number $\alpha(G)$. If $\kappa(G) \ge \alpha(G)$, then G is Hamiltonian.

Show that this theorem is best possible, in the sense that there exist non-hamiltonian graphs G with $\alpha(G) = \kappa(G) + 1$. Illustrate this fact for the Petersen graph and the complete bipartite graph $K_{r,r+1}$, $r \in \mathbb{N}$.

21. Consider the following theorem of Ore, Bermond and Linial (cf. lecture)

Let G be a 2-connected graph in which $d(x) + d(y) \ge d$ holds for any two non-adjacent vertices $x, y \in V(G)$ and some arbitrary but fixed natural number d. Then there exists a cycle of length at least min $\{n, d\}$ in G.

Show that this theorem directly implies the following two results

- (1) If in a graph G with $|V(G)| \ge 3$, the inequality $d(x) + d(y) \ge n$ holds for any two vertices $x, y \in V(G)$ such that $\{x, y\} \notin E(G)$, then G is hamiltonian. (Due to Ore, cf. lecture.)
- (2) A graph G with $n := |V(G)| \ge 3$ and minimum degree $\delta(G) \ge n/2$ is hamiltonian. (Due to Dirac, cf. lecture.)
- 22. Let G be a connected graph with $d := \min\{d(x) + d(y): x, y \in V(G), \{x, y\} \notin E(G)\}$. If $d \ge 2\delta(G)$ holds, then G contains a path with at least $\min\{d+1, n\}$ vertices.
- 23. Construct
 - (a) a non-hamiltonian connected 4-regular graph with 11 vertices, and
 - (b) a non-hamiltonian 2-connected 4-regular graph.
- 24. Show that the *d*-dimensional cube Q_d is hamiltonian (cf. Exercise No. 2 for the definition of Q_d).
- 25. A graph G is called hamiltonian connected iff for any two different vertices $u, v \in V(G), u \neq v$, there exists a hamiltonian u-v-path in G. Prove the following statements:
 - (a) If $d := \min\{d(x) + d(y): x, y \in V(G), \{x, y\} \notin E(G)\} \ge |V(G)| + 1$ holds, than also $\kappa(G) \ge \alpha(G) + 1$ holds.
 - (b) If $\kappa(G) \ge \alpha(G) + 1$ holds for some graph G, then G is hamiltonian connected.
 - (c) If the (n + 1)-st hamiltonian hull $\mathcal{H}_n(G)$ of G is isomorphic to K_n , then G is hamiltonian connected.
- 26. Show that a planar graph is 2-connected, iff the border of every region is a cycle.