Advanced and algorithmic graph theory Summer term 2016

2nd work sheet

14. Prove the following theorem stated in the lecture.

Let G be a connected graph. Assume that $\operatorname{DFS}(s)$, i.e. a depth first search starting at some $s \in V(G)$, has been performed in G. Consider the classification of edges from $E(G)$ into tree edges (collected in the set T) and backward edges (collected in the set B), as well as their orientation according to DFSNum (cf. lecture). This orientation allows the specification of a starting vertex and an end vertex for every edge (cf. lecture). For all $v \neq s$ and for all $\{v, w\} \in E(G)$ starting at v the following holds: $\{v, w\}$ and the tree edge ending at v belong to the same block if and only if one of the following conditions holds: (a) $\{v, w\}$ is a backward edge or (b) $\{v, w\}$ is a tree edge which is not a leading edge.
15. Prove the following theorem stated in the lecture.

Let G be a connected graph. Assume that $D F S(s)$, i.e. a depth first search starting at some $s \in V(G)$, has been performed in G. The following statements hold:
(a) The root s is a cut-vertex if and only if there exists more than one leading edge incident to s.
(b) A vertex $v \in V(G) \backslash\{s\}$ is a cut-vertex if and only if there exists at least one leading edge starting at v.
16. Let G be a $2 k$-edge connected graph for some $k \in \mathbb{N}$. Show that G contains at least k edge-disjoint spanning trees. Is this result best possible, i.e. is there any $2 k$-edge connected graph, which does not contain $k+1$ edge-disjoint spanning trees, for some $k \in \mathbb{N}$? Given an arbitrary $k \in \mathbb{N}$, can you find a $2 k$-edge connected graph, which does not contain $k+1$ edge-disjoint spanning trees?
17. A graph G is called cubic, if all vertices of G have degree 3, i.e. $d_{G}(v)=3$, for all $v \in V(G)$. Show that for a cubic graph G the equality $\lambda(G)=\kappa(G)$ holds, i.e. the vertex connectivity equals the edge connectivity.
18. (a) Show that for a graph G with $\operatorname{diam}(G)=2$ the equality $\lambda(G)=\delta(G)$ holds.
(b) Let G be a graph with $|V(G)| \geq 2$ such that $d(u)+d(v) \geq n-1$ holds, for all $u, v \in V(G)$ with $\{u, v\} \notin E(G)$. Show that $\lambda(G)=\delta(G)$.
19. (a) Show that for the d-dimensional cube $Q_{d}, d \in \mathbb{N}, d \geq 2$, the equality $\kappa\left(Q_{d}\right)=\delta\left(Q_{d}\right)=d$ holds. (See Exercise No. 2 for the definition of Q_{d}.)
(b) A Halin graph H is defined as a graph obtained from a tree T without vertices of degree 2 by adding to it a cycle which joins all the leaves of T. Show that $\kappa(H)=\delta(H)=3$ holds for any Halin graph H.

