Advanced and algorithmic graph theory

Summer term 2016

1st work sheet

1. Show that $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$ hold for every graph G, where $\operatorname{rad}(G)$ denotes the radius of graph G and $\operatorname{diam}(G)$ denotes its diameter as defined in the lecture.
2. Let $d \in \mathbb{N}$ and $V=\{0,1\}^{d}$, thus V is the set of all 0 -1-sequences of length d. The graph with vertex set V in which two such sequences form an edge if and only if they differ in exactly one position, is called the d-dimensional cube. Determine the average degree, the number of edges, the diameter, the girth and the circumference of this graph.
(Hint for the circumference: induction on d.)
3. Prove that a graph G with minimum degree $\delta:=\delta(G)$ and girth $g:=g(G)$ has at least $n_{0}(\delta, g)$ vertices, where

$$
n_{0}(\delta, g):=\left\{\begin{array}{cl}
1+\delta \sum_{i=0}^{r-1}(\delta-1)^{i} & \text { if } g=: 2 r+1 \text { is odd } \\
2 \sum_{i=0}^{r-1}(\delta-1)^{i} & \text { if } g=: 2 r \text { is even }
\end{array}\right.
$$

4. Determine the connectivity $\kappa(G)$ and the edge connectivity $\lambda(G)$ for (a) $G=P_{m}$ being a path of length m, (b) $G=C_{n}$ being a cycle of length n, (c) $G=K_{n}$ being a complete graph with n vertices, (d) $G=K_{m, n}$ being a complete bipartite graph with m and n vertices in its partition sets, respectively, and (e) G being the d dimensional cube.
5. Prove the following theorem of Dirac (1960): Any k vertices of a k-connected graph, $k \geq 2$, lie on a common cycle.
6. Show that a graph G is 2-edge connected if and only if it possesses a weak ear decomposition, i.e. G can be obtained as $G:=G_{0} \cup G_{1} \cup G_{2} \cup \ldots G_{k}$, where G_{0} is a cycle and every graph G_{i} is either a path which has only the two end-vertices in common with $V\left(G_{0} \cup G_{1} \cup \ldots G_{i-1}\right)$, or G_{i} is a cycle which has just one vertex in common with $G_{0} \cup G_{1} \cup \ldots G_{i-1}$, for $1 \leq i \leq k$.
7. (s-t-labelling)

Let $G=(V, E)$ be a graph and $\{s, t\} \in E$. Show that the following holds: G is 2 -connected if and only if there exists a bijective mapping $\sigma: V \rightarrow\{1,2, \ldots, n:=|G|\}$ (called s-t-labelling), such that $\sigma(s)=1, \sigma(t)=n$, and for every $v \in V \backslash\{s, t\}$ there exist two neighbors $x, y \in N(v)$ with $\sigma(x)<\sigma(v)<\sigma(y)$.
8. A block of a graph G is a maximal connected subgraph without a cut-vertex. Show that, if G is connected, then the central vertices of G (cf. the lecture for the definition) lie on a block of G.
9. Let $G=(V, E)$ be a graph and \sim be a binary relation defined on E such that $e_{1} \sim e_{2}$ if and only if $e_{1}=e_{2}$ or e_{1} and e_{2} lie on a common cycle in G. Show that \sim is an equivalence relation and that the equivalence classes of \sim are exactly the edge sets of the blocks of G. An edge e forms as a singleton an equivalence class $\{e\}$ of \sim iff e is a bridge in G (cf. the lecture for the definition of a bridge).
10. (Normal trees) A tree T with a fixed vertex r in T is called a tree rooted at r. Consider the relation \preceq in $V(T)$ associated with T and r defined as follows: $x \preceq y$ iff $x=y$ or x lies in the unique path $r-y$-path in T. (We can consider this also as a "height" relation and say that x lies below y in T iff $x \preceq y$ and $x \neq y$. We say that the vertices of T at distance k from r have height k and form the k th level of T.) Further denote the down-closure $\lceil y\rceil$ of y and the up-closure $\lfloor x\rfloor$ of X as follows:

$$
\lceil y\rceil:=\{x: x \preceq y\} \text { and }\lfloor x\rfloor:=\{y: x \preceq y\}, \text { respectively. }
$$

Show that
(a) \preceq is a partial order in $V(T)$.
(b) The root r is the least (or minimum) element in \prec.
(c) The leaves of T are maximal elements in \prec.
(d) The end-vertices of eny edge in $E(T)$ are comparable in \preceq.
(e) The down closure of each veretx in $V(T)$ is a chain, i.e. a set of pairwise comparable elements.
11. Let $G=(V, E)$ be a graph and let T be a subgraph of G which is a rooted tree with root $r \in V(T)$. T is called normal in G iff the end-vertices of every $V(T)$-path in G are comparable with respect to the relation \preceq associated with T and r (c.f. Exercise no. 10). Show that the following holds for any normal tree T in G
(a) Any two vertices $x, y \in V(T)$ are separated in G by the set $\lceil x\rceil \cap\lceil y\rceil$.
(b) If $S \subseteq V(T)=V(G)$ and S is down-closed (i.e. S contains the down-closure of any element $s \in S)$, then the components of $G-S$ are spanned by the sets $\lfloor x\rfloor$ with x minimal in $V(T)-S$.
12. Let G be a connected graph and let $r \in V(G)$. Show that there exists a normal spanning tree T rooted at r in G.
13. Consider some ear decomposition of a 2-connected graph $G=(V, E)$ (cf. the lecture for its definition) and show that the number of ears equals $|E|-|V|$.

