Advanced and algorithmic graph theory Summer term 2016

- 1st work sheet
- 1. Show that $rad(G) \leq diam(G) \leq 2rad(G)$ hold for every graph G, where rad(G) denotes the radius of graph G and diam(G) denotes its diameter as defined in the lecture.
- 2. Let $d \in \mathbb{N}$ and $V = \{0, 1\}^d$, thus V is the set of all 0-1-sequences of length d. The graph with vertex set V in which two such sequences form an edge if and only if they differ in exactly one position, is called the d-dimensional cube. Determine the average degree, the number of edges, the diameter, the girth and the circumference of this graph.

(Hint for the circumference: induction on d.)

3. Prove that a graph G with minimum degree $\delta := \delta(G)$ and girth g := g(G) has at least $n_0(\delta, g)$ vertices, where

$$n_0(\delta, g) := \begin{cases} 1 + \delta \sum_{i=0}^{r-1} (\delta - 1)^i & \text{if } g =: 2r + 1 \text{ is odd} \\ 2 \sum_{i=0}^{r-1} (\delta - 1)^i & \text{if } g =: 2r \text{ is even} \end{cases}$$

- 4. Determine the connectivity $\kappa(G)$ and the edge connectivity $\lambda(G)$ for (a) $G = P_m$ being a path of length m, (b) $G = C_n$ being a cycle of length n, (c) $G = K_n$ being a complete graph with nvertices, (d) $G = K_{m,n}$ being a complete bipartite graph with m and n vertices in its partition sets, respectively, and (e) G being the d dimensional cube.
- 5. Prove the following theorem of Dirac (1960): Any k vertices of a k-connected graph, $k \ge 2$, lie on a common cycle.
- 6. Show that a graph G is 2-edge connected if and only if it possesses a weak ear decomposition, i.e. G can be obtained as $G := G_0 \cup G_1 \cup G_2 \cup \ldots G_k$, where G_0 is a cycle and every graph G_i is either a path which has only the two end-vertices in common with $V(G_0 \cup G_1 \cup \ldots G_{i-1})$, or G_i is a cycle which has just one vertex in common with $G_0 \cup G_1 \cup \ldots G_{i-1}$, for $1 \le i \le k$.
- 7. (*s*-*t*-labelling)

Let G = (V, E) be a graph and $\{s, t\} \in E$. Show that the following holds: G is 2-connected if and only if there exists a bijective mapping $\sigma: V \to \{1, 2, \ldots, n := |G|\}$ (called *s-t-labelling*), such that $\sigma(s) = 1$, $\sigma(t) = n$, and for every $v \in V \setminus \{s, t\}$ there exist two neighbors $x, y \in N(v)$ with $\sigma(x) < \sigma(v) < \sigma(y)$.

- 8. A block of a graph G is a maximal connected subgraph without a cut-vertex. Show that, if G is connected, then the central vertices of G (cf. the lecture for the definition) lie on a block of G.
- 9. Let G = (V, E) be a graph and \sim be a binary relation defined on E such that $e_1 \sim e_2$ if and only if $e_1 = e_2$ or e_1 and e_2 lie on a common cycle in G. Show that \sim is an equivalence relation and that the equivalence classes of \sim are exactly the edge sets of the blocks of G. An edge e forms as a singleton an equivalence class $\{e\}$ of \sim iff e is a bridge in G (cf. the lecture for the definition of a bridge).
- 10. (Normal trees) A tree T with a fixed vertex r in T is called a tree rooted at r. Consider the relation \leq in V(T) associated with T and r defined as follows: $x \leq y$ iff x = y or x lies in the unique path r-y-path in T. (We can consider this also as a "height" relation and say that x lies below y in T iff $x \leq y$ and $x \neq y$. We say that the vertices of T at distance k from r have height k and form the kth level of T.) Further denote the down-closure [y] of y and the up-closure [x] of X as follows:

$$\lceil y \rceil := \{x: x \leq y\}$$
 and $\lfloor x \rfloor := \{y: x \leq y\}$, respectively.

Show that

- (a) \leq is a partial order in V(T).
- (b) The root r is the least (or minimum) element in \prec .
- (c) The leaves of T are maximal elements in \prec .
- (d) The end-vertices of eny edge in E(T) are comparable in \leq .
- (e) The down closure of each veretx in V(T) is a chain, i.e. a set of pairwise comparable elements.
- 11. Let G = (V, E) be a graph and let T be a subgraph of G which is a rooted tree with root $r \in V(T)$. T is called *normal* in G iff the end-vertices of every V(T)-path in G are comparable with respect to the relation \preceq associated with T and r (c.f. Exercise no. 10). Show that the following holds for any normal tree T in G
 - (a) Any two vertices $x, y \in V(T)$ are separated in G by the set $[x] \cap [y]$.
 - (b) If $S \subseteq V(T) = V(G)$ and S is down-closed (i.e. S contains the down-closure of any element $s \in S$), then the components of G S are spanned by the sets $\lfloor x \rfloor$ with x minimal in V(T) S.
- 12. Let G be a connected graph and let $r \in V(G)$. Show that there exists a normal spanning tree T rooted at r in G.
- 13. Consider some ear decomposition of a 2-connected graph G = (V, E) (cf. the lecture for its definition) and show that the number of ears equals |E| |V|.